Math 3280 Assignment 11, due Friday, December 1st.

For the first two problems, consider two blocks of mass  $m_1$  and  $m_2$  connected by springs to each other and to walls as shown below. The displacement of the masses from their equilibrium positions are denoted by  $x_1$  and  $x_2$ . The stiffness of the three springs are  $k_1$ ,  $k_2$ , and  $k_3$  as shown. Compute the natural frequencies and describe the natural modes of oscillation in each of the three following cases:

(1) 
$$k_1 = k_2 = 4$$
 and  $k_3 = 2$ , and  $m_1 = 2$ ,  $m_2 = 1$ .

(2)  $k_1 = k_3 = 0$  and  $k_2 = 4$ , and  $m_1 = m_2 = 1$ .



(3) Compute the Laplace transform of the function

$$v(t) = \begin{cases} 1 \text{ for } t \in [0,1] \\ 0 \text{ for } t \in [-\infty,0) \text{ and } t \in (1,\infty] \end{cases}$$

directly from the definition  $\mathcal{L}(v) = \int_0^\infty e^{-st} v(t) dt$ .

- (4) Use the Laplace transform method to solve the initial value problem x'' x' 2x = 0, x(0) = 0, x'(0) = 1.
- (5) Use the Laplace transform method to solve the initial value problem x' = 2x y, y' = 3x + 4, x(0) = 0, y(0) = 1.
- (6) Compute the Laplace transform of the sawtooth function  $f(t) = t \lfloor t \rfloor$  where  $\lfloor t \rfloor$  is the *floor* function. The floor of t is the largest integer less than or equal to t. For example,  $\lfloor 2.6 \rfloor = 2$ .