Math 3280 Worksheet 41: Solving systems of linear ODEs with Laplace transforms

Group members (2 to 4): _____

(1) Use the Laplace transform method to solve the initial value problem

$$x' = x + 2y,$$

 $y' = x + e^t,$
 $x(0) = 0, \quad y(0) = 0.$

(Note that once you find either x(t) or y(t), the other can be computed from the system of ODEs.)

Function	Transform
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n (<i>n</i> is a non-negative integer)	$\frac{n!}{s^{n+1}}$
$t^a \ (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
e^{kt}	$\frac{1}{s-k}$
$\cos(kt)$	$\frac{s}{s^2 + k^2}$
$\sin(kt)$	$\frac{k}{s^2 + k^2}$
$e^{at}f(t)$	F(s-a)
tx(t)	-X'(s)
$\int_0^t x(\tau) d\tau$	X(s)/s
x'(t)	sX(s) - x(0)
x''(t)	$s^2 X(s) - s x(0) - x'(0)$

TABLE 1. Some Laplace transforms, $\mathcal{L}(x(t)) = X(s)$