Worksheet 46 solutions

(1) Consider an long cascade of tanks, each containing 1 liter of water. Each tank drains into the next at a rate of 1 liter per hour. Initially the first tank contains 1 gram of salt dissolved into it, but it is being refilled with pure water at a rate of 1 liter per hour. The other tanks in the cascade are initially filled with pure water. Compute how much salt is in the nth tank at time t.

Solution: The amount of salt in the first tank, $x_1(t)$, has the initial condition $x_1(0) = 1$

and ODE $x'_1 = -x_1$. The solution to this is $x_1 = e^{-t}$. For the *n*th tank, $x'_n = -x_n + x_{n-1}$. If we know x_{n-1} , then this is a nonhomogeneous first order ODE. In standard form, $x'_n + x_n = x_{n-1}$.

We can show by induction that $x_n = \frac{t^n e^{-t}}{n!}$. The integrating factor for the ODE is e^t , \mathbf{SO}

$$x_n = Ce^{-t} + e^{-t} \int x_{n-1}e^t dt$$

Our inductive assumption is that $x_{n-1} = \frac{t^{n-1}e^{-t}}{(n-1)!}$, so

$$x_n = Ce^{-t} + e^{-t} \int \frac{t^{n-1}e^{-t}}{(n-1)!} e^t dt = Ce^{-t} + e^{-t} \int \frac{t^{n-1}}{(n-1)!} dt = Ce^{-t} + e^{-t} \frac{t^n}{n!}$$

and since $x_n(0) = 0, \ C = 0$, so $x_n = \frac{t^n e^{-t}}{n!}$.

(2) Compute the inverse of

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 2 \end{bmatrix}$$

Solution:

This can be done in a number of ways: row-reducing the augmented matrix A|I, or by using the block structure of A:

$$A^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0\\ -\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1/2 \end{bmatrix}$$

(3) Are the vectors
$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, $v_4 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ linearly

independent? If not, write one of them as a linear combination of the others.

Solution:

The condition that $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$ can be written as a matrix-vector system

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} 0$$

The reduced row echelon form of the coefficient matrix is

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

which has only 3 pivots - the last column corresponds to the coefficient c_4 , which is a free variable. So the vectors are not independent. We can choose $c_4 = 1$, which then implies $c_1 = c_2 = c_3 = 1$, and there is the linear relation

 $v_1 + v_2 + v_3 + v_4 = 1$

which can be solved for v_4 , for example, to get

$$v_4 = -v_1 - v_2 - v_3$$