Math 3280 Assignment 1, due January 24th.

- (1) Read sections 1.1 and 1.2 in the text (Edwards and Penney).
- (2) Verify that the given function y(x) is a solution to the differential equation by substitution for each of the problems below.

(a)
$$y' = 4x^3$$
, $y = x^4 + 27$. (b) $y' = -3y$, $y = 2e^{-3x}$.

(3) Find all solutions of the form $y = e^{rx}$ to the differential equations below by substitution (here r is a real constant).

(a)
$$3y'' - 4y' - 4y = 0.$$
 (b) $4y'' = y$

- (4) Determine a value of the constant C so that the given solution of the differential equation satisfies the initial condition.
 - (a) $y = \ln(x+C)$ solves $e^{y}y' = 1$, y(0) = 1. (b) $y = Ce^{-x} + x - 1$ solves y' = x - y, y(0) = 3.
- (5) Write a differential equation for a population P that is changing in time (t) such that the rate of change is proportional to the square root of P.
- (6) Solve the following initial value problems.

(a)
$$\frac{dy}{dx} = 3x + 1$$
, $y(0) = 1$. (b) $\frac{dy}{dx} = \sqrt{x}$, $y(9) = 0$.
(c) $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$, $y(0) = 0$. (d) $\frac{dy}{dx} = xe^{-x}$, $y(0) = 2$.