Math 3280 Worksheet 36: Solving initial value problems with Laplace transforms

Group members (2 to 4):

(1) Solve the initial value problem x'' + x' - 2x = t, x(0) = x'(0) = 0 using the Laplace transform. If you have time, check your work using other methods (characteristic equation and undetermined coefficients). A table of Laplace transforms is given on the back of this sheet.

Function $f(t)$	Transform $\mathcal{L}(f(t)) = F(s)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n (<i>n</i> is a non-negative integer)	$\frac{n!}{s^{n+1}}$
$t^a \ (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$
e^{kt}	$\frac{1}{s-k}$
$\cos(kt)$	$\frac{s}{s^2 + k^2}$
$\sin(kt)$	$\frac{k}{s^2 + k^2}$
-tf(t)	F'(s)
$\int_0^t f(au) d au$	F(s)/s
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$

TABLE 1. Some Laplace transforms, $\mathcal{L}(f(t)) = F(s)$