You should read sections 1.1 and 1.2 in the text (Edwards and Penney). In general it is a very good idea to read the corresponding sections of the textbook before doing assignments for this class.

(1) Verify that the given function y(x) is a solution to the differential equation by substitution for each of the problems below.

(a)
$$y' = 4x^3$$
, $y = x^4 + 27$. (b) $y' = -3y$, $y = 2e^{-3x}$.

(2) Find all solutions of the form $y = e^{rx}$ to the differential equations below by substitution (here r is a real constant).

(a)
$$3y'' - 4y' - 4y = 0$$
. (b) $4y'' = y$.

(3) Determine a value of the constant C so that the given solution of the differential equation satisfies the initial condition.

(a)
$$y = \ln(x+C)$$
 solves $e^y y' = 1$, $y(0) = 1$.
(b) $y = Ce^{-x} + x - 1$ solves $y' = x - y$, $y(0) = 3$.

- (4) Write a differential equation for a population P that is changing in time (t) such that the rate of change is proportional to the
- (5) Solve the following initial value problems.

square root of P.

(a)
$$\frac{dy}{dx} = 3x + 1$$
, $y(0) = 1$. (b) $\frac{dy}{dx} = \sqrt{x}$, $y(9) = 0$.

(c)
$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$
, $y(0) = 0$. (d) $\frac{dy}{dx} = xe^{-x}$, $y(0) = 2$.