
Worksheet 45 and 46 solutions

(1) Compute the inverse of

A =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 2


Solution:

A−1 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1/2



(2) Are the vectors v1 =


1
−1

0
0

, v2 =


0
1
−1

0

, v3 =


0
0
1
−1

, v4 =


−1

0
0
1

 linearly

independent? If not, write one of them as a linear combination of the others.

Solution:
The condition that c1v1 + c2v2 + c3v3 + c4v4 = 0 can be written as a matrix-vector

system 
1 0 0 −1
−1 1 0 0

0 −1 1 0
0 0 −1 1




c1
c2
c3
c4

 0

The reduced row echelon form of the coefficient matrix is
1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0


which has only 3 pivots - the last column corresponds to the coefficient c4, which is

a free variable. So the vectors are not independent. We can choose c4 = 1, which then
implies c1 = c2 = c3 = 1, and there is the linear relation

v1 + v2 + v3 + v4 = 1

which can be solved for v4, for example, to get

v4 = −v1 − v2 − v3.
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(3) A matrix P is an orthogonal projection if P 2 = P and P T = P . Find the 3×3 orthogonal

projection P that projects any 3-D vector

 x
y
z

 onto the line spanned by

 1
1
1

.

Hint: for this projection, P

 1
1
1

 =

 1
1
1

 and Pb =

 0
0
0

 for any b that is perpen-

dicular to

 1
1
1

, such as b =

 1
−1

0

.

Solution:

The condition that Pv = 0 for vectors v perpendicular to

 1
1
1

 implies that all of the

entries of P are equal. Then the condition P

 1
1
1

 =

 1
1
1

 implies that each entry is

1/3, so

P =
1

3

 1 1 1
1 1 1
1 1 1



(4) Consider an long cascade of tanks, each containing 1 liter of water. Each tank drains
into the next at a rate of 1 liter per hour. Initially the first tank contains 1 gram of salt
dissolved into it, but it is being refilled with pure water at a rate of 1 liter per hour. The
other tanks in the cascade are initially filled with pure water. Compute how much salt is
in the nth tank at time t.

Solution: The amount of salt in the first tank, x1(t), has the initial condition x1(0) = 1
and ODE x′1 = −x1. The solution to this is x1 = e−t.

For the nth tank, x′n = −xn + xn−1. If we know xn−1, then this is a nonhomogeneous
first order ODE. In standard form, x′n + xn = xn−1.

We can show by induction that xn = tne−t

n!
. The integrating factor for the ODE is et,

so

xn = Ce−t + e−t
∫
xn−1e

t dt

Our inductive assumption is that xn−1 = tn−1e−t

(n−1)! ,

xn = Ce−t + e−t
∫

tn−1e−t

(n− 1)!
et dt = Ce−t + e−t

∫
tn−1

(n− 1)!
dt = Ce−t + e−t

tn

n!
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and since xn(0) = 0, C = 0, so xn = tne−t

n!
.

(5) The spread of many diseases are modeled by various SIR ODE models, where SIR is an
acronym for Susceptible, Infected, and Recovered. In the following version, we assume a
population has a constant proportional death rate of d and a birth rate of b. The disease
is transmitted at a rate cIS, and infected people recover at a proportional rate I, giving
the equations:

dS

dt
= b− dS − cIS

dI

dt
= cIS − (d+ g)I

dR

dt
= gI − dR

For a population with b = d = 1, when is the disease-free equilibrium point (disease
free meaning I = R = 0) stable?

Solution:
If I = R = 0, then if dS

dt
= 0 we must have S = b/d which is 1 for b = d = 1. So the

equilibrium point is (1, 0, 0).
The Jacobian is

J =

 −1 −cS 0
cI cS − g − 1 0
0 g −d

 |S=1,I=0,R=0 =

 −1− cI −c 0
0 c− g − 1 0
0 g −d


Expanding the determinant along the first or last column we find

det(J − λI) = (−λ− 1)2(c− g − 1− λ)

so the eigenvalues are −1,−1, c− g − 1. In order for the equilibrium point to be stable,
we need all of the real parts of the eigenvalues to be nonpositive, so c − g − 1 ≤ 0, or
1 + c ≥ g. This quantifies the fact that the recovery rate from infection, g, must be (one
unit) larger than the transmission interaction rate c for the disease to disappear.


