Worksheet 45 and 46 solutions

(1) Compute the inverse of

[ cos(f) —sin(d) 0
A= | sin(d) cos(f) O
i 0 0 2
Solution:
[ cos(f) sin(d) 0
At = | —sin(@) cos(d) 0
i 0 0 1/2
1 0 0 -1
-1 1 0 0 )
(2) Are the vectors v; = o | 2= 1 = 1= 0 linearly
0 0 —1 1
independent? If not, write one of them as a linear combination of the others.
Solution:
The condition that civy + cove + c3v3 + cqvs = 0 can be written as a matrix-vector
system
1 0 0 —1 C1
-1 1 0 0 Co 0
0 -1 1 0 C3
0 0 —1 1 Cy

The reduced row echelon form of the coefficient matrix is

1 00 -1
010 -1
001 -1
000 O

which has only 3 pivots - the last column corresponds to the coefficient ¢4, which is
a free variable. So the vectors are not independent. We can choose ¢4 = 1, which then
implies ¢; = ¢; = ¢3 = 1, and there is the linear relation

vi+vetuvst+u,=1
which can be solved for vy, for example, to get

Vg = —U1 — V2 — V3.



(3)

A matrix P is an orthogonal projection if P2 = P and PT = P. Find the 3 x 3 orthogonal

x 1
projection P that projects any 3-D vector | y | onto the line spanned by | 1
z 1
[ 1 1 0
Hint: for this projection, P | 1 | = [ 1 | and Pb= | 0 | for any b that is perpen-
|1 1 0
1 1
dicular to | 1 |,suchasb= | —1
1 |0
Solution: i
1
The condition that Pv = 0 for vectors v perpendicular to | 1 | implies that all of the
1
1 1
entries of P are equal. Then the condition P | 1 | = | 1 | implies that each entry is
1 1
1/3, so ]
1 1 11
P=-1111
S\1 11

Consider an long cascade of tanks, each containing 1 liter of water. Each tank drains
into the next at a rate of 1 liter per hour. Initially the first tank contains 1 gram of salt
dissolved into it, but it is being refilled with pure water at a rate of 1 liter per hour. The
other tanks in the cascade are initially filled with pure water. Compute how much salt is
in the nth tank at time .

Solution: The amount of salt in the first tank, z;(¢), has the initial condition z;(0) = 1
and ODE 2 = —z;. The solution to this is z; = e~

For the nth tank, ), = —z, + x,,—1. If we know x,,_;, then this is a nonhomogeneous

first order ODE. In standard form, 2, + x,, = z,_;.

We can show by induction that z, = t”;;t. The integrating factor for the ODE is e,
SO

x, =Ce '+ e_t/xn_let dt

tnfleft
(n—1)!

Our inductive assumption is that =, ; =

—t —t et t —t —t ! —t "
r, =Ce " +e edt=Ce " +e ———dt=Ce " +e'—
(n—1)! (n—1)! n!



and since z,(0) =0, C =0, so x, = "¢

(5) The spread of many diseases are modeled by various SIR ODE models, where SIR is an
acronym for Susceptible, Infected, and Recovered. In the following version, we assume a
population has a constant proportional death rate of d and a birth rate of b. The disease
is transmitted at a rate cI.S, and infected people recover at a proportional rate I, giving
the equations:

ﬁ:b—dS—c[S
dt
dl

& s - I
o clS — (d+ g)

AR
O T—dR
a7

For a population with b = d = 1, when is the disease-free equilibrium point (disease
free meaning I = R = 0) stable?

Solution:

If I = R =0, then if 2 = 0 we must have S = b/d which is 1 for b =d = 1. So the
equilibrium point is (1,0, 0).

The Jacobian is

-1 —cS 0 —1—cl —c 0
J = cl ¢S—g—1 0 |s=1.7=0.r=0 = 0 c—g—1 0
0 g —d 0 g —d

Expanding the determinant along the first or last column we find
det(J — M) = (=A—1)*(c—g—1-X)
so the eigenvalues are —1, —1,¢c — g — 1. In order for the equilibrium point to be stable,
we need all of the real parts of the eigenvalues to be nonpositive, so c —g —1 < 0, or

1+ ¢ > g. This quantifies the fact that the recovery rate from infection, g, must be (one
unit) larger than the transmission interaction rate ¢ for the disease to disappear.



