
Math 3280 Practice Final Solutions

This is longer than the actual exam, which will be 7-8 questions. You are allowed up
to two sheets of notes (both sides) and a calculator, although any use of a calculator
must be indicated. Please let me know if you find any typos in these solutions.

(1) Find the general solution to (1 + t)y′ + y = cos t.

Solution: In standard form (y′+P (t)y = Q(t)) we have y′+
1

1 + t
y =

cos(t)

1 + t
.

Using the integrating factor method (section 1.5), we have

ρ(t) = e
∫
P (t)dt = elog(1+t) = 1 + t.

Then
∫
ρ Q dt =

∫
cos t dt = sin t and

y =
C

ρ
+

1

ρ

∫
ρQdt =

C

1 + t
+

sin t

1 + t
.

(2) Rewrite the initial value problem y′′′ + y′′ + y = t, y(0) = y′(0) = y′′(0) = 0 as
an equivalent first-order system.

Solution: Introduce the variables v1 = y′, v2 = v′1 = y′′ and the system
becomes:

y′ = v1

v′1 = v2

v′2 = t− v2 − y
y(0) = 0, v1(0) = 0, v2(0) = 0

Note that rewriting the initial conditions is a required part of this answer.

(3) Find the general solution to the system

d

dt

[
x1
x2

]
=

[
2 4
−1 −3

] [
x1
x2

]
.

Solution: The eigenvalues of the matrix are found from

det

[
2− λ 4
−1 −3− λ

]
= λ2 + λ− 2 = (λ− 1)(λ+ 2) = 0

From row-reducing A − λI for each of these two eigenvalues (λ = 1 and
λ = −2) we can find that the eigenvectors are ~v1 = (−4, 1) and ~v2 = (−1, 1), so
the solutions are x1 = −4C1e

t − C2e
−2t and x2 = C1e

t + C2e
−2t.

For large t, (x1, x2) ≈ et(−4C1, C1). For large −t, (x1, x2) ≈ e−2t(−C2, C2).
Some trajectories are shown below.
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(4) Are the vectors v1 = (1, 2, 3, 4), v2 = (2,−2, 4, 2), and v3 = (0,−3,−1,−3)
linearly independent? If not, write one of them as a linear combination of the
other two.

Solution: The vectors are linearly dependent if there are c1, c2, c3, not all
zero, such that c1v1 + c2v2 + c3v3 = 0. This is equivalent to the coefficient

matrix A =


1 2 0
2 −2 −3
3 4 −1
4 2 −3

 having less than 3 pivots after row-reduction. If

we row-reduce A we find
1 2 0
2 −2 −3
3 4 −1
4 2 −3

→


1 2 0
0 −6 −3
0 −2 −1
0 −6 −3

→


1 2 0
0 1 1

2
0 0 0
0 0 0

→


1 0 −1
0 1 1

2
0 0 0
0 0 0

 .
This only has two pivots. The free variable is c3, which we can choose to be 2
(to avoid fractions - it would be OK to set it to any nonzero value), which gives
c2 = −1 and c1 = 2.

So 2v1 − v2 + 2v3 = 0; we can write any of the vectors in terms of the other
two but the easiest choice here is v2 = 2v1 + 2v3.

(5) Solve the initial value problem y′′ + y = cosx, y′(0) = 0, y(0) = −1
2
.

Solution: This could be also done with a Laplace transform. Using unde-
termined coefficients we find the solution by decomposing it into y = yh + yp.
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The homogeneous solution yh is found from the characteristic equation r2 + 1 =
(r − i)(r + i) = 0 to be yh = C1 cos(x) + C2 sin(x).

Since the right-hand side cos(x) is contained in the solution space of the homo-
geneous equation, we are forced to consider particular solutions of the form yp =
Ax cos(x)+Bx sin(x). Then y′′p = −Ax cos(x)−2A sin(x)+2B cos(x)−Bx sin(x).
Substituting these forms into our ODE yields −2A sin(x) + 2B cos(x) = cos(x),
so A = 0 and B = 1/2.

So now we know that y = C1 cos(x) + C2 sin(x) + x sin(x)/2. The initial

conditions become C2 = 0 and C1 = −1
2
, so y =

− cos(x) + x sin(x)

2
.

(6) Use Euler’s, the Improved Euler’s, or the Runge-Kutta method to numerically
approximate y(2) to two digits of accuracy if y′ = t+

√
y and y(0) = 1.

Solution: It takes 76 steps to get the desired accuracy with Euler’s Method
(so this is somewhat harder than anything I would require on the actual final
exam). For the improved Euler’s method, 5 steps are needed. Fourth-order
Runge-Kutta works in 1 step (stepsize 2), giving y(2) ≈ 6.37 which agrees with
y(2) = 6.411474127809772838513 . . . in the first two digits after rounding:

f(x, y) = x+
√
y, h = 2, x0 = 0, y0 = 1

k1 = f(x0, y0) = f(0, 1) = 1

k2 = f(x0 + h/2, y0 + hk1/2) = f(1, 2) = 1 +
√

2 ≈ 2.41421356

k3 = f(x0 + h/2, y0 + hk2/2) = f(1,
√

2 + 2) =

√√
2 + 2 + 1 ≈ 2.84775907

k4 = f(x0 + h, y0 + hk3) = f(2, 2

√√
2 + 2 + 3) =

√
2

√√
2 + 2 + 3 + 2 ≈ 4.58756993

y(2) ≈ y1 = y0+
h

6
(k1+2k2+2k3+k4) =

√√
2 + 2+

1

3

√
2

√√
2 + 2 + 3+

2

3

√
2+

10

3
≈ 6.37050506

It is not necessary to keep the intermediate calculations in exact form, as done
above, but you do need to be careful to include enough digits to avoid rounding
error.

(7) Find the general solution to the system

d

dt

[
x1
x2

]
=

[
1 −5
1 3

] [
x1
x2

]
.

Solution: The characteristic equation is det(A − λI) = λ2 − 4λ + 8 with
roots (eigenvalues) λ = 2± 2i. We need to find one eigenvector, lets find it for
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λ = 2 + 2i. We now row reduce

A− (2 + 2i)I =

[
−1− 2i −5
1 1− 2i

]
→
[

1 1− 2i
0 0

]
So the eigenvector can be chosen to be v = (−1 + 2i, 1). Then the solution to

the system is

x =

[
x1
x2

]
= C1Re[ve

2t(cos (2t) + i sin (2t))] + C2Im[ve2t(cos (2t) + i sin (2t))]

= C1

[
−e2t(cos (2t) + 2 sin (2t))
e2t cos (2t)

]
+ C2

[
e2t(− sin (2t) + 2 cos (2t))
e2t sin (2t)

]

(8) Find the Laplace transform X(s) = L(x(t)) if x′′ + 8x′ + 15x = 0 and x(0) = 0,
x′(0) = 1. Then find the solution x(t).

Solution: Taking the Laplace transform of the ODE gives

s2X(s) + 8sX(s) + 15X(s)− 8x(0)− sx(0)− x′(0)

= s2X(s) + 8sX(s) + 15X(s)− 1 = 0.

Solving for X(s) and performing a partial fraction decomposition, we get

X(s) =
1

s2 + 8s+ 15
=

1/2

s+ 3
− 1/2

s+ 5

Since L−1( 1
s−a) = eat, we can invert X(s) to get x(t) = e−3t

2
− e−5t

2
.

The use of the Laplace transform will be optional on the final, but for problems
with initial conditions such as x(0) = 0, x′(0) = 0 it can be the easiest method.

(9) What is the form of the general solution to the ODE y′′′ − 4y′′ + 14y′ − 20y =
tet cos (3t) + t2. Hint: one of the roots of the characteristic polynomial of the
left-hand side is 2.

Solution:
First we find the homogeneous solution. The characteristic equation can be

factored using the hint to get

r3 − 4r2 + 14r − 20 = (r − 2)
(
r2 − 2 r + 10

)
and then we can use the quadratic equation to get r = 2, 1± 3i. So the homo-
geneous solutions is yh = C1e

t sin (3t) + C2e
t cos (3t) + C3e

2t.
If there were no overlap with the homogeneous solution we would use the form

Atet cos (3t) +Btet sin (3t) + Cet cos (3t) +Det sin (3t) + Et2 + Ft+G
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for the particular solution, but the terms with C and D are contained in the
homogeneous solution so we multiply everything involving this root (the A,B,C,
and D terms) by t to get the form of the particular solution:

yp = At2et cos (3t) +Bt2et sin (3t) + Ctet cos (3t) +Dtet sin (3t) + Et2 + Ft+G.

The form of the general solution is the sum of these, y = yh + yp.

(10) Consider a mass-spring system with two masses of mass m1 and m2. Mass 1 is
connected to a wall with a spring of stiffness k1 and to mass 2 with a spring of
stiffness k2. Mass 2 is a connected to a second wall with a spring of stiffness
k3, as shown below. Their displacements from the equilibrium are x1 and x2,

which we will combine into a vector x =

(
x1
x2

)
. Then if x′′ = Ax, show that

the eigenvalues of A must be negative if the masses and spring constants are
positive.

Solution: As discussed in chapter 7.4, the matrix A has the form:(
−(k1 + k2)/m1 k2/m1

k2/m2 −(k2 + k3)/m2

)
One way to see that the eigenvalues are negative if the ki and mi are positive

is to use the fact that if λ1 and λ2 are the eigenvalues of A, then tr(A) = λ1 +λ2
and det(A) = λ1λ2. The determinant can be simplified to

det(A) =
k1k2 + k1k3 + k2k3

m1m2

which is clearly positive. This means the eigenvalues must have the same sign,
but since their trace is negative the sign of each must be negative.

(11) Use either the Laplace transform method or the eigenvalue/eigenvector method
to find the steady state solution to the initial value problem x′ = −x − z,
y′ = −x− y, z′ = 2x+ z, x(0) = 0, y(0) = 0, z(0) = 2.

Solution: Using the eigenvalue/eigenvector method we first compute the eigen-

values of the coefficient matrix A =

 −1 0 −1
−1 −1 0

2 0 1

 from the characteristic

equation det(A−λI) = 0. This factors as (λ+1)(λ2 +1) = 0, so the eigenvalues
are ±i and −1.

Now we find the eigenvectors. For λ = −1 we row reduce

A+ I =

 0 0 −1
−1 0 0

2 0 2
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to get

 1 0 0
0 0 1
0 0 0

. The kernel of this matrix consists of vectors of the form 0
a
0

 for any a. We can choose a = 1.

For the complex conjugate pair we can use either eigenvalue. If we choose to

use i, then we row reduce A− iI to get

 1 0 1/2− i/2
0 1 i/2
0 0 0

. If we choose the

last entry of the eigenvalue to be 2, the eigenvector is

 −1 + i
−i
2

.

The general solution is x
y
z

 = C1

 0
1
0

 e−t+C2Re(

 −1 + i
−i
2

 (cos(t)+i sin(t)))+C3Im(

 −1 + i
−i
2

 (cos(t)+i sin(t)))

= C1

 0
1
0

 e−t + C2

 − cos(t)− sin(t)
sin(t)

2 cos(t)

+ C3

 cos(t)− sin(t)
− cos(t)
2 sin(t)

 .

Now we can use the initial conditions; evaluating at t = 0 gives −C2 +C3 = 0,
C1−C3 = 0, and 2C2 = 2. So C3 = 1 and C1 = 1. For the steady state solution
we drop the first term since e−t will decay to 0. So the steady state solution is: −2 sin(t)

− cos(t) + sin(t)
2 cos(t) + 2 sin(t)


(12) Find the equilibria of the system x′ = 2y3−2x, y′ = x2−1, and determine their

stability by computing the eigenvalues of the linearized systems.

Solution: To find the equilibria we solve the pair of equations 2y3 − 2x = 0,
x2 − 1 = 0. The second equation is simpler, since it only involves x - any
equilibria must have x = ±1. Substituting these values into the first equation
gives y3 = ±1, so y = ±1 and y is the same sign as x. I.e. the two equilibria
are (1, 1) and (−1,−1).

The Jacobian matrix of the functions f1(x, y) = 2y3 − 2x and f2 = x2 − 1 is(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
=

(
∂(2y3−2x)

∂x
∂(2y3−2x)

∂y
∂(x2−1)

∂x
∂(x2−1)

∂y

)
=

(
−2 6y2

2x 0

)
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At the equilibrium (1, 1) this becomes

(
−2 6
2 0

)
. The eigenvalues are solu-

tions of λ2 + 2λ− 12 = 0, which are −1±
√

13. Since −1 +
√

13 > 0, there is a
positive eigenvalue and the equilibrium is unstable.

At the equilibrium (−1,−1) the Jacobian becomes

(
−2 6
−2 0

)
. The eigenval-

ues are solutions of λ2 + 2λ+ 12 = 0, which are −1±
√

13i. Since the real parts
of these are negative, the equilibrium is stable (nearby solutions would spiral
inwards).

(13) Indicate whether each of the following statements is true or false.
(a) The set of solutions (x, y, z) ∈ R3 to the equation x+ y + z = 0 is a vector

subspace of R3 of dimension 2.

Solution: True. A single linear homogeneous constraint will have a solution
set that is one dimension less than the ambient vector space. Alternatively
we can compute this by row-reducing the coefficient matrix of the system,
which in this case is the matrix [1, 1, 1]. This is already in row-reduced
echelon form, with one pivot and two free variables (y and z). The number
of free variables is the dimension of the solution set.

(b) The set of solutions (x, y, z) ∈ R3 to the equation x + y = 1 is a vector
subspace of R3 of dimension 2.
Solution: False. This is a nonhomogeneous system, so the solutions do not
form a vector subspace.

(c) The set of solutions to the differential equation y′′+xy′+x2y = 0 is a vector
space of dimension 2.

Solution: True. See Theorem 4 of section 5.2.

(d) The set of solutions (x, y, z) ∈ R3 of the system below is a vector subspace
of R3 of dimension 1.

x+ 2y + 3z = 0
4x+ 5y + 6z = 0
7x+ 8y + 9z = 0

Solution: True. The coefficient matrix has a row-reduced form with two
pivots and one free variable.
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(e) The polynomials 1 + x, 1 − x, 1 + x2 are a basis for the vector space of
polynomials with real coefficients of degree less than or equal to 2.

Solution: True. A more obvious basis would be 1, x, x2, which can be
obtained from these polynomials as linear combinations: 1 = (1 + x)/2 +
(1−x)/2, x = (1+x)/2−(1−x)/2, and x2 = −(1+x)/2−(1−x)/2+(1+x2).

(14) Three identical, well-stirred tanks of with 100 liters of water in each tank are
connected in series with tank 1 pumping 10 liter/minute into tank 2, tank 2
pumping 10 liter/minute into tank 3, and tank 3 pumping 10 liter/minute into
tank 1. If tank 1 initially has 500 grams of salt dissolved in it, and the other
two tanks start at time t = 0 with no salt, which of the following initial value
problems describes the amounts of salt in grams in each tank (x1 = salt in tank
1, x2 = salt in tank 2, x3 = salt in tank 3).

Solution: Answer (c) is correct

x′1 =
1

10
x3 −

1

10
x1 x′2 =

1

10
x1 −

1

10
x2 x′3 =

1

10
x2 −

1

10
x3


