HOMEWORK 1, DUE TUESDAY, SEPTEMBER 5TH IN CLASS.

- (1) Find the center and radius of the sphere  $x^2 + y^2 + z^2 = x + y + z$ .
- (2) Find the largest sphere contained in the first octant (i.e.  $x \ge 0, y \ge 0, z \ge 0$ ) with center (5,4,3).
- (3) Compute the sum of the vectors (-1, -1) and (2, 3), and illustrate this sum geometrically.
- (4) Find the angle between the vectors (0, 1, 1) and (1, 0, 1).
- (5) Find a unit vector that is orthogonal to both  $\vec{i} + \vec{j}$  and  $\vec{i} + \vec{k}$ . (Here  $\vec{i}$  is an older notation for the unit vector (1,0,0), likewise  $\vec{j} = (0,1,0)$  and  $\vec{k} = (0,0,1)$ .)
- (6) For  $\vec{a} = (1, 0, 0)$ ,  $\vec{b} = (1, 1, 0)$ , and  $\vec{c} = (1, 1, 1)$ , compute the following quantities if they have meaningful answers.

(a) 
$$\vec{a} \times (\vec{b} \times \vec{c})$$

(b) 
$$(\vec{a} \cdot \vec{b}) \times (\vec{a} \cdot \vec{c})$$

(c) 
$$(\vec{a} \cdot \vec{b}) \vec{c}$$

(d) 
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{c})$$

(e) 
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$

(f) 
$$\vec{a} \times (\vec{b} \cdot \vec{c})$$

- (7) Find an implicit equation for the plane that contains the point (2, 0, -1) and which has normal vector  $2\vec{j} + \vec{k}$ .
- (8) Find an implicit equation for the plane that contains the points (1, 1, 0), (1, 0, 1), and (0, 1, 1).
- (9) Compute the projection of the vector (1,1,1) onto the direction of the vector (2,0,0).