
ASSIGNMENT 6, DUE FRIDAY, OCTOBER 13TH

- (1) Estimate the volume of the solid bounded by z = 0, $z = x + 2y^2$, and within the rectange $x \in [0, 2]$, $y \in [0, 4]$ by using a Riemann sum with n = m = 2 and use the value of the function in the lower-right corner of each sub-rectangle. Repeat the estimate using the midpoint of each rectangle which of these do you expect to be more accurate?
- (2) Estimate the volume of Angel Island, CA, in cubic feet by using the midpoint rule with a 3 by 3 subdivision as shown on the following map. The squares in the subdivision are 2000 feet on a side, and elevations are also shown in feet.

- (3) Find the value of the integral $\int \int_R 2 dA$, where $R = \{(x,y) | -3 \le x \le 3, -2 \le y \le 2\}$ by identifying it as the volume of a solid.
- (4) Find the value of the integral $\int \int_R 8 x \ dA$, where $R = \{(x,y)| 4 \le x \le 8, \ -1 \le y \le 1\}$ by identifying it as the volume of a solid.
- (5) Calculate the following double integrals

(6)
$$\int_0^2 \int_{-1}^1 (x^2 + y^2) dy dx$$
 (7) $\int_2^4 \int_0^1 (2x + \sqrt{y}) dy dx$

(8)
$$\int_{1}^{2} \int_{0}^{1} \frac{ye^{y}}{x} dy dx$$
 (9) $\int \int_{R} 2xye^{x^{2}y} dA$, $R = [0, 2] \times [0, 1]$.

- (10) Find the volume of the solid bounded by the planes x=4, y=2, the coordinate planes, and the elliptic paraboloid $z=2+(x-1)^2+8y^2$.
- (11) Compute the average value of the function $f(x,y) = e^x \sqrt{y + e^x}$ on the rectangle $R = [0,1] \times [0,2]$.
- (12) Compute the average value of the function f(x,y) = xy on the triangle with vertices (0,0), (3,0), and (1,2).