Homework 9, Due Wednesday November 15th.

- (1) Compute the vector line integral $\int_C \vec{F} \cdot d\vec{s}$ where $\vec{F} = (yz, xz, xy)$ and C is the curve $\vec{r}(t) = (t, t^2, t^3)$ for t in [0, 1].
- (2) Find a function f such that $\nabla f = \vec{F}$ where $\vec{F} = (4xy + \ln(x), 2x^2)$. Use this evaluate $\int_C \vec{F} \cdot d\vec{s}$ where C is a curve beginning at (1,0) and ending at (2,2) along which x > 0.
- (3) Use Green's Theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (\sqrt{x} + y^3, x^2 + \sqrt{y})$ and C is the graph of $y = \sin(x)$ from (0,0) to $(\pi,0)$ and the line segment from $(\pi,0)$ to (0,0).
- (4) Evaluate the line integral $\oint_C \vec{F} \cdot d\vec{r}$ directly and with Green's Theorem if $\vec{F} = (xy^2, x^3)$, and C is the rectangle (oriented positively) (0,0), (2,0), (2,3), and (0,3).
- (5) Calculate the curl and divergence of the vector field $\vec{F} = (2, x + yz, xy \sqrt{z})$.
- (6) Calculate the curl and divergence of the vector field $\vec{F} = (\cos(yz), 0, -\sin(xy))$.
- (7) Construct a potential function for the vector field $(e^z, 6, xe^z)$.
- (8) Is there a vector field \vec{G} such that $\nabla \times \vec{G} = (xy^2, yz^2, zx^2)$? Explain why or why not.
- (9) Show that $\nabla \cdot (f\vec{F}) = f\nabla \cdot \vec{F} + \vec{F} \cdot \nabla f$ if f is a scalar function of (x, y, z) with continuous partial derivatives and \vec{F} is a vector field whose components also have continuous partial derivatives.
- (10) If $\vec{r} = (x, y, z)$, $r = |\vec{r}|$, and $\vec{F} = \vec{r}/r^p$ (p is a real number), compute $\nabla \cdot \vec{F}$. Is there a value of p for which $\nabla \cdot \vec{F} = 0$?
- (11) Parameterize the plane which contains the point (1, 1, 1) and which is parallel to the vectors (1, 0, -1) and (1, -1, 0).
- (12) Parameterize the lower half of the ellipsoid $x^2/9 + y^2/4 + z^2 = 1$.
- (13) Compute the surface area of the part of the plane 3x + 2y + z = 6 that is inside the cylinder $x^2 + y^2 = 16$.