
Group members (2 to 4):

(1) Suppose we have a plane curve $\vec{r}(t) = (x(t), y(t))$, and we construct a second curve $\vec{p}(t)$ parallel to it, a distance c in the direction of the unit normal vector \vec{N} (so $\vec{p} = \vec{r} + c\vec{N}$). An example of a few such curves are shown in the figure below for the ellipse $\vec{r} = (2\cos(t), \sin(t))$, for four values of c.

Find a formula for the curvature of such curves in terms of c and the curvature κ of the original curve \vec{r} . One helpful trick is that you can assume that \vec{r} is parameterized with respect to arclength, so $|\vec{r}'| = 1$.