Group members (2 to 4):

(1) Suppose the magnitude of a 3D vector field $F=(f_1,f_2,f_3)$ is bounded at each point in space by $|F|=\sqrt{f_1^2+f_2^2+f_3^2}\leq |z|$. Use the divergence theorem to find an upper bound on the magnitude of $\int\int\int_R {\rm div} F\ dV$ where R is the unit cube $x\geq 0,\ x\leq 1,\ y\geq 0,\ y\leq 1,\ z\geq 0,\ z\leq 1.$

- (2) For the vector field $G = (-2xz, 0, y^2)$:
 - (a) Compute the curl of G.

(b) Show that $\oint_C G \cdot dr = 0$ for any simple closed smooth curve on the sphere $x^2 + y^2 + z^2 = 4$.