Math 3298 Practice final exam problems

The actual exam will consist of six to eight required questions and possibly an optional extra credit question.

- (1) Find the integral of the function $f(x,y) = 2x\sqrt{y^2 x^2}$ over the triangle $T = \{(x,y) \mid 0 \le y \le 2, 0 \le x \le y\}$
- (2) Find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 9$ and outside the cylinder $x^2 + y^2 = 1$.
- (3) Compute the integral $\int \int \int_R \sqrt{x^2 + y^2} \, dV$ where R is the region inside the cylinder $x^2 + y^2 = 25$ and between z = -1 and z = 4.
- (4) Find the volume of the solid bounded by the planes z = x, y = x, x + y = 2, and z = 0.
- (5) Change the order of integration of $\int_0^2 \int_{Arctan(x)}^{Arctan(\pi x)} dy dx$ and evaluate the integral.
- (6) Compute the integral $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{2-x^2-y^2} (x^2+y^2)^{3/2} dz dy dx$ by changing to cylindrical coordinates.
- (7) This difficult a problem would be extra credit: Assuming that $\beta \in (0, \pi/2)$ and a > 0, compute the following integral

$$\int_{0}^{a\sin\beta} \int_{y\cot\beta}^{\sqrt{a^2 - y^2}} \int_{0}^{1} \ln(x^2 + y^2) \, dz \, dx \, dy$$

- (8) Reverse the order of integration for the integral $\int_0^1 \int_x^1 \int_0^{y^2} f(x, y, z) dz dy dx$.
- (9) Compute the value of the vector line integral $\int_C \vec{F} \cdot d\vec{r}$ where C is the path $(4-3^t, -2+2t, \pi t), t \in [0, 1]$, and $\vec{F} = (2x \cos z x^2, z 2y, y x^2 \sin z)$.
- (10) Find the linearization of f(x, y) at (x, y) = (0, 1) if f = h(u(x, y), v(x, y)) and $\operatorname{grad}(h)|_{(1,1)} = (\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v})|_{(1,1)} = (2, 3), \ u(x, y) = x + y$, and $v(x, y) = y^2$.
- (11) Find the surface area of the torus parameterized by $x = (2 + \cos(v))\cos(u)$, $y = (2 + \cos(v))\sin(u)$, $z = \sin(v)$, with $u \in [0, 2\pi]$ and $v \in [0, 2\pi]$.
- (12) Find the maxima and minima of $f(x, y) = \frac{1}{x} + \frac{2}{y}$ on the set $\frac{1}{x^2} + \frac{1}{y^2} = 1$.

- (13) Find the volume of the solid wedge bounded by the planes z = 0 and z = -2yand the cylinder $x^2 + y^2 = 4$ (with $y \ge 0$).
- (14) Use Green's Theorem to find the smooth, simple, closed and positively oriented curve in the plane for which the line integral $\oint (\frac{x^2y}{4} + \frac{y^3}{3})dx + xdy$ has the largest possible value.
- (15) Compute the value of $\int \int_{S} (\nabla \times \vec{F}) \cdot \vec{n} \, dS$ where S is the upper half of the ellipsoid $4x^2 + 9y^2 + 36z^2 = 36$, $z \ge 0$, with upward pointing normal, and $\vec{F} = (y, x^2, (x^2 + y^2)^{3/2} e^{xyz}).$
- (16) Let $\vec{r}(t)$ be a curve in space with unit tangent, normal, and binormal vectors \vec{T} , \vec{N} , and \vec{B} . Show that $\frac{d\vec{B}}{dt}$ is perpendicular to \vec{T} .
- (17) Compute the flux integral $\int \int_S \vec{F} \cdot \vec{n} \, dS$ where S is the graph of $z = 1 x^2 y^2$, with upward normal, for $z \ge 0$, and with $\vec{F} = (xz, yz, 2z^2)$.
- (18) Use the divergence theorem to compute the flux of $\vec{F} = (z^5 + x, \cos(xz), z^2)$ through the surface bounded by z = 0 and $z = 1 x^2 y^2$.