Math 3298 Practice Final Solutions

Please let me know if you find any mistakes or typos.

(1) Find the integral of the function f(x,y) = 2x+/y% — 22 over the triangle T' =
{(z,y) |0<y<2,0<a<y}

Solution: This can be done in either order but its easier to do the z-integral

first:
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The first integral is done with a substitution u = y? — 22

(2) Find the volume of the solid inside the sphere x? + y? + 2% = 9 and outside the
cylinder 22 + 3% = 1.

Solution: This is probably easiest in cylindrical coordinates. Solving the
sphere boundary equation for z we find z = £4/9 — 22 — y2 = £v/9 —r2. So
the volume is
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(3) Compute the integral / / / V2?2 +y? dV where R is the region inside the
R
cylinder 22 + y? = 25 and between z = —1 and z = 4.

Solution: Again, cylindrical coordinates are the best choice for this problem.
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(4) Find the volume of the solid bounded by the planes z =z, y = z, x + y = 2,
and z = 0.

Solution: This is a tetrahedron. By considering any three of the four bound-
ary equations, we can find that the vertices are (0,0,0), (1,1,0), (1,1,1), and
(0,2,0). This helps to sketch the figure and determine the bounds for the inte-
gral:
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(5) Change the order of integration of f02 f;ﬁﬁgw) dydx and evaluate the integral.

Solution: This question is definitely a bit harder than one I would put on an
exam. The integration region is shown below.
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To do the x-integral first we need to split up the region into two pieces because
of the corner at (2,arctan(2)). Then we have
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The final answer has been simplified using several properties of the logarithm:

log(a) — log(b) = log(a/b), log(1/b) = —log(b), and log(a®) = blog(a).
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Compute the integral / / / (x +y2)3/2 dz dy dx by changing to
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cylindrical coordinates.

Solution: The projection of the region onto the x-y plane is the disk of radius
1. So the integral can be rewritten in cylindrical coordinates as:
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This difficult a problem would be extra credit: Assuming that 8 € (0,7/2) and
a > 0, compute the following integral
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Solution: The z-integral is easy and we get
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The first thing to do is understand the region of integration. The upper x-
boundary x = y/a? — y? is the right-hand semicircle of radius a centered at
(0,0). The lower z-boundary is the line z = cot (8)y or y = tan (5)z, a line
through (0,0) with angle 8. The y boundaries are the z-axis and the height
where the line intersects the circle. So our region of integration is simply a
circular wedge of radius a and angle § from the z-axis. Then our integral is
much easier in polar coordinates:
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With a substitution u = 72, this integral can be done with integration by

parts, or looked up in a table, with the final answer being Sa?(In (a) — %)

which evaluates to
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Solution: The answer is:
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The projection onto the zy plane is the triangle with vertices (0,0), (1,1) and
(0,1). The surface slopes up in the z-direction parabolically to the line y = 1.

(9) Compute the vector line integral [, F-dF where C'is the path (4—3!, —2+2¢, 7t),
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te[0,1], and F = (2zcosz — 2%,z — 2y, y — 22 sin 2).

Solution: The field is conservative since curl( ) = (. A potential function
for Flis f = x%cosz — 2% /3 + yz — 4?, so fCF dr'= f(1,0,m) — f(3,-2,0) =
—4/3—-(9—-9—-4)=28/3.

Find the linearization of f(x,y) at (z,y) = (0,1) if f = h(u(z,y),v(z,y)) and
grad (1)) = (2, 2| = (2.3), u(e,y) = +y, and v(z,y) = 4.

Solution: The linearization is L(z,y) = £(0, 1)+ 2| 1) (z—0)+2 \ 01)(y—1).

To find the partial derivatives we use the chain rule and the derivatlves 81;| =1,
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L(z,y) = f(0,1) +2(x —0) +8(y — 1) = f(0,1) + 2z + 8y — 8.

Since neither f nor h is given explicitly this is all that is possible to determine,
besides the fact that f(0,1) = h(1,1).

Find the surface area of the torus parameterized by x = (2 + cos(v)) cos(u),
y = (2+ cos(v))sin(u), z = sin(v), with u € [0, 27] and v € [0, 27].

Solution: The surface area element is computed from the length of the cross

product of the partials % and %, where 7 = (x,y, z). After many uses of the
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identity sin®(t) + cos?(t) = 1, this simplifies to

or or

% X a—;|dudv = |2 4 cos(v)|dudv.

The absolute value function can be dropped because 2 + cos(v) > 0. Now the
surface area can be computed:
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Find the maxima and minima of f(z,y) = 1 + % on the set = + ?% =1.
Solution: I will use the Lagrange multiplier method. Let g = %2 + y% —1 (the
constraint), and then require that 7(f) = A v (g), i.e.
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After clearing denominators we find that A = z/2 = y. Using that relation
between z and y, the constraint equations becomes g(z,z/2) = % + &% —
1 = 0 or 22 = 5. So there are two critical points on the constraint curve,
+(+/5,4/5/2). Comparison with other values of f on the constraint curve shows

that f(\/g, \/5/2) = +/b is a maximum and f(—\/_, —\/5/2) = —/5 is a mini-

muim.

Find the volume of the solid wedge bounded by the planes z = 0 and z = —2y
and the cylinder 22 4+ y? = 4 (with y > 0).

Solution: In cylindrical coordinates
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Use Green’s Theorem to find the smooth, simple, closed and positively oriented

curve in the plane for which the line integral ¢ (% + %)d&? + xdy has the largest
possible value.
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Solution: The corresponding double integral from Green’s theorem is

//R(1—x2/4—y2) dA

The integrand is positive in the interior of the ellipse 22 /4+y* = 1, so we choose
this ellipse as the desired curve (z = 2cos (t), y = sint).

Compute the value of [ [(7 X F) - it dS where S is the upper half of the
ellipsoid 422 + 9y? + 3622 = 36, z > 0, with upward pointing normal, and
F = <y7 $2, (IQ 4 y2)3/2exyz)'

Solution: The presence of nasty stuff like e™¥* inspires us to reformulate the
computation using Stokes’ theorem. The ellipse boundary can be parameterized
as x = 3cost, y = 2sint,z = 0. The corresponding line integral is then
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Let 7(t) be a curve in space with unit tangent, normal, and binormal vectors T,

N and B. Show that ‘Z—f is perpendicular to T.

Solution: Since B =T x N, & = &L « N + T x & However N is parallel

' de
to %, so in fact dB =T x dN Fmally, note that a is always perpendicular to

@ x b for any vectors a, b.

Compute the flux integral | [ F it dS where S is the graph of z = 1 — 22 — 42,
with upward normal, for z > 0, and with F= (xz,yz,22%).

Solution: The given flux integral can be computed directly or by using the
divergence theorem. I will do it both ways for comparison (on a test, one method
would be sufﬁcient) Directly' since the surface is given as a graph z = f(z,y),

i dS =dS = (—fz,—fy, 1) = (22,2y,1). Then
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We cannot immediately apply the divergence theorem because this surface is
not closed. However, we could consider the closed surface Sy = SUS;, where S}
is the unit disk z = 0, 22 + y? < 1 and with normal (0,0, —1). Since F =0 on
Sy, this addition doesn’t actually affect the flux integral, i.e. [ [o F-iidS, =
J[F-idSbut [ [, F-iidSy=[[[divFdV. Since divF = 6z, the value
we are after can be computed in cylindrical coordinates as:
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(18) Use the divergence theorem to compute the flux of F = (25 + z, cos(xz), 22)
through the surface bounded by z = 0 and z = 1 — 2% — 3.

Solution: The divergence of Fis 1+ 22, so
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where R is the interior of S. To evaluate this it is easiest to use cylindrical
coordinates:
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