
Math 3298 Practice Final Solutions

Please let me know if you find any mistakes or typos.

(1) Find the integral of the function f(x, y) = 2x
√
y2 − x2 over the triangle T =

{(x, y) | 0 ≤ y ≤ 2, 0 ≤ x ≤ y}

Solution: This can be done in either order but its easier to do the x-integral
first: ∫ 2

0

∫ y

0

2x
√
y2 − x2dxdy = −2

3

∫ 2

0

(y2 − x2)3/2|y0dy

=
2

3

∫ 2

0

y3dy =
y4

6
|20 = 8/3

The first integral is done with a substitution u = y2 − x2.

(2) Find the volume of the solid inside the sphere x2 + y2 + z2 = 9 and outside the
cylinder x2 + y2 = 1.

Solution: This is probably easiest in cylindrical coordinates. Solving the
sphere boundary equation for z we find z = ±

√
9− x2 − y2 = ±

√
9− r2. So

the volume is

∫ 2π

0

∫ 3

1

∫ √9−r2
−
√
9−r2

rdzdrdθ =

∫ 2π

0

∫ 3

1

2r
√

9− r2drdθ

=

∫ 2π

0

−2

3
(9− r2)3/2|31dθ =

4π 83/2

3

(3) Compute the integral

∫ ∫ ∫
R

√
x2 + y2 dV where R is the region inside the

cylinder x2 + y2 = 25 and between z = −1 and z = 4.

Solution: Again, cylindrical coordinates are the best choice for this problem.

∫ ∫ ∫
R

√
x2 + y2 dV =

∫ 5

0

∫ 2π

0

∫ 4

−1
r2 dz dθ dr =

∫ 5

0

∫ 2π

0

5r2 dθ dr

=

∫ 5

0

10πr2 dr =
10πr3

3
|50 =

1250π

3

1
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(4) Find the volume of the solid bounded by the planes z = x, y = x, x + y = 2,
and z = 0.

Solution: This is a tetrahedron. By considering any three of the four bound-
ary equations, we can find that the vertices are (0, 0, 0), (1, 1, 0), (1, 1, 1), and
(0, 2, 0). This helps to sketch the figure and determine the bounds for the inte-
gral:

V =

∫ 1

0

∫ 2−x

x

∫ x

0

dz dy dx =

∫ 1

0

∫ 2−x

x

x dy dx =

∫ 1

0

xy|2−xx dx

=

∫ 1

0

(2x− 2x2) dx = 1/3

(5) Change the order of integration of
∫ 2

0

∫ Arctan(πx)
Arctan(x)

dydx and evaluate the integral.

Solution: This question is definitely a bit harder than one I would put on an
exam. The integration region is shown below.
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To do the x-integral first we need to split up the region into two pieces because
of the corner at (2, arctan(2)). Then we have∫ arctan(2)

0

∫ tan(y)

tan(y)/π

dx dy +

∫ arctan(2π)

arctan(2)

∫ 2

tan(y)/π

dx dy =

∫ arctan(2)

0

(tan(y)− tan(y)/π)dy +

∫ arctan(2π)

arctan(2)

(2− tan(y)/π)dy =

−2 arctan(2) + 2 arctan(2π) +
(−1 + π) log(5)

2π
+

log
(

5
1+4π2

)
2π

≈ .827 . . .

The final answer has been simplified using several properties of the logarithm:
log(a)− log(b) = log(a/b), log(1/b) = − log(b), and log(ab) = b log(a).
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(6) Compute the integral

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)3/2 dz dy dx by changing to

cylindrical coordinates.

Solution: The projection of the region onto the x-y plane is the disk of radius
1. So the integral can be rewritten in cylindrical coordinates as:∫ 2π

0

∫ 1

0

∫ 2−r2

r2
r4 dz dr dθ

which evaluates to

=
1

5

∫ 2π

0

∫ 1

0

(2− 2r2)r4 dr dθ = 8π/35

(7) This difficult a problem would be extra credit: Assuming that β ∈ (0, π/2) and
a > 0, compute the following integral∫ a sinβ

0

∫ √a2−y2

y cotβ

∫ 1

0

ln (x2 + y2) dz dx dy

Solution: The z-integral is easy and we get∫ a sinβ

0

∫ √a2−y2

y cotβ

ln (x2 + y2) dx dy

The first thing to do is understand the region of integration. The upper x-
boundary x =

√
a2 − y2 is the right-hand semicircle of radius a centered at

(0, 0). The lower x-boundary is the line x = cot (β)y or y = tan (β)x, a line
through (0, 0) with angle β. The y boundaries are the x-axis and the height
where the line intersects the circle. So our region of integration is simply a
circular wedge of radius a and angle β from the x-axis. Then our integral is
much easier in polar coordinates:∫ a

0

∫ β

0

ln (r2)r dθ dr = β

∫ a

0

ln (r2)r dr

With a substitution u = r2, this integral can be done with integration by
parts, or looked up in a table, with the final answer being βa2(ln (a)− 1

2
).

(8) Reverse the order of integration for the integral
∫ 1

0

∫ 1

x

∫ y2
0
f(x, y, z)dzdydx.
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Solution: The answer is:∫ 1

0

∫ 1

√
z

∫ y

0

f(x, y, z) dx dy dz.

The projection onto the xy plane is the triangle with vertices (0, 0), (1, 1) and
(0, 1). The surface slopes up in the z-direction parabolically to the line y = 1.

(9) Compute the vector line integral
∫
C
~F ·d~r where C is the path (4−3t,−2+2t, πt),

t ∈ [0, 1], and ~F = (2x cos z − x2, z − 2y, y − x2 sin z).

Solution: The field is conservative since curl(~F ) = ~0. A potential function

for ~F is f = x2 cos z − x3/3 + yz − y2, so
∫
C
~F · d~r = f(1, 0, π) − f(3,−2, 0) =

−4/3− (9− 9− 4) = 8/3.

(10) Find the linearization of f(x, y) at (x, y) = (0, 1) if f = h(u(x, y), v(x, y)) and
grad(h)|(1,1) = (∂h

∂u
, ∂h
∂v

)|(1,1) = (2, 3), u(x, y) = x+ y, and v(x, y) = y2.

Solution: The linearization is L(x, y) = f(0, 1)+ ∂f
∂x
|(0,1)(x−0)+ ∂f

∂y
|(0,1)(y−1).

To find the partial derivatives we use the chain rule and the derivatives ∂u
∂x
| = 1,

∂u
∂y

= 1, ∂v
∂x
| = 0, ∂v

∂y
|0,1 = 2:

∂f

∂x
|(0,1) =

∂h

∂u
|(1,1)

∂u

∂x
|(0,1) +

∂h

∂v
|(1,1)

∂v

∂x
|(0,1) = 2 · 1 + 3 · 0 = 2

∂f

∂y
|(0,1) =

∂h

∂u
|(1,1)

∂u

∂y
|(0,1) +

∂h

∂v
|(1,1)

∂v

∂y
|(0,1) = 2 · 1 + 3 · 2 = 8

So

L(x, y) = f(0, 1) + 2(x− 0) + 8(y − 1) = f(0, 1) + 2x+ 8y − 8.

Since neither f nor h is given explicitly this is all that is possible to determine,
besides the fact that f(0, 1) = h(1, 1).

(11) Find the surface area of the torus parameterized by x = (2 + cos(v)) cos(u),
y = (2 + cos(v)) sin(u), z = sin(v), with u ∈ [0, 2π] and v ∈ [0, 2π].

Solution: The surface area element is computed from the length of the cross
product of the partials ∂~r

∂u
and ∂~r

∂v
, where ~r = (x, y, z). After many uses of the
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identity sin2(t) + cos2(t) = 1, this simplifies to

dS = |∂~r
∂u
× ∂~r

∂v
|dudv = |2 + cos(v)|dudv.

The absolute value function can be dropped because 2 + cos(v) > 0. Now the
surface area can be computed:

S.A. =

∫ 2π

0

∫ 2π

0

(2 + cos(v))dudv = 2π

∫ 2π

0

(2 + cos(v))dv = 8π2.

(12) Find the maxima and minima of f(x, y) = 1
x

+ 2
y

on the set 1
x2

+ 1
y2

= 1.

Solution: I will use the Lagrange multiplier method. Let g = 1
x2

+ 1
y2
− 1 (the

constraint), and then require that 5(f) = λ5 (g), i.e.

(− 1

x2
,− 2

y2
) = (−2λ

x3
,−2λ

y3
).

After clearing denominators we find that λ = x/2 = y. Using that relation
between x and y, the constraint equations becomes g(x, x/2) = 1

x2
+ 4

x2
−

1 = 0 or x2 = 5. So there are two critical points on the constraint curve,
±(
√

5,
√

5/2). Comparison with other values of f on the constraint curve shows
that f(

√
5,
√

5/2) =
√

5 is a maximum and f(−
√

5,−
√

5/2) = −
√

5 is a mini-
mum.

(13) Find the volume of the solid wedge bounded by the planes z = 0 and z = −2y
and the cylinder x2 + y2 = 4 (with y ≥ 0).

Solution: In cylindrical coordinates

V =

∫ π

0

∫ 2

0

∫ 0

−2r sin θ
dz r dr dθ =

∫ π

0

∫ 2

0

2r2 sin θ dr dθ

=

∫ π

0

16 sin θ/3 dθ = 32/3.

(14) Use Green’s Theorem to find the smooth, simple, closed and positively oriented

curve in the plane for which the line integral
∮

(x
2y
4

+ y3

3
)dx+xdy has the largest

possible value.
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Solution: The corresponding double integral from Green’s theorem is∫ ∫
R

(1− x2/4− y2) dA.

The integrand is positive in the interior of the ellipse x2/4+y2 = 1, so we choose
this ellipse as the desired curve (x = 2 cos (t), y = sin t).

(15) Compute the value of
∫ ∫

S
(5 × ~F ) · ~n dS where S is the upper half of the

ellipsoid 4x2 + 9y2 + 36z2 = 36, z ≥ 0, with upward pointing normal, and
~F = (y, x2, (x2 + y2)3/2exyz).

Solution: The presence of nasty stuff like exyz inspires us to reformulate the
computation using Stokes’ theorem. The ellipse boundary can be parameterized
as x = 3 cos t, y = 2 sin t, z = 0. The corresponding line integral is then∮

C

~F · d~r =

∫ 2π

0

(2 sin t, 9 cos2 t, (9 cos2(t) + 4 sin2(t))3/2) · (−3 sin t, 2 cos t, 0)dt =

∫ 2π

0

−6 sin2(t) + 18 cos3(t) dt = −6π.

(16) Let ~r(t) be a curve in space with unit tangent, normal, and binormal vectors ~T ,
~N , and ~B. Show that d ~B

dt
is perpendicular to ~T .

Solution: Since ~B = ~T × ~N , d ~B
dt

= d~T
dt
× ~N + ~T × d ~N

dt
. However ~N is parallel

to d~T
dt

, so in fact d ~B
dt

= ~T × d ~N
dt

. Finally, note that ~a is always perpendicular to

~a×~b for any vectors ~a, ~b.

(17) Compute the flux integral
∫ ∫

S
~F ·~n dS where S is the graph of z = 1−x2− y2,

with upward normal, for z ≥ 0, and with ~F = (xz, yz, 2z2).

Solution: The given flux integral can be computed directly or by using the
divergence theorem. I will do it both ways for comparison (on a test, one method
would be sufficient). Directly: since the surface is given as a graph z = f(x, y),

~n dS = ~dS = (−fx,−fy, 1) = (2x, 2y, 1). Then∫ ∫
S

~F · ~n dS =

∫ ∫
S

(xz, yz, 2z2)|S · (2x, 2y, 1) dxdy



7

=

∫ ∫
S

(1−x2−y2)(2x2+2y2)+2(1−x2−y2)2 dxdy = 2

∫ 2π

0

∫ 1

0

(1−r2)(2r2+2(1−r2))r drdθ

= 4

∫ 2π

0

∫ 1

0

(r − r3) drdθ = π.

We cannot immediately apply the divergence theorem because this surface is
not closed. However, we could consider the closed surface S2 = S∪S1, where S1

is the unit disk z = 0, x2 + y2 ≤ 1 and with normal (0, 0,−1). Since ~F = 0 on

S1, this addition doesn’t actually affect the flux integral, i.e.
∫ ∫

S2

~F · ~n dS2 =∫ ∫
S
~F · ~n dS but

∫ ∫
S2

~F · ~n dS2 =
∫ ∫ ∫

div ~FdV . Since div ~F = 6z, the value
we are after can be computed in cylindrical coordinates as:∫ 2π

0

∫ 1

0

∫ 1−r2

0

6zr dzdrdθ = 3

∫ 2π

0

∫ 1

0

∫ 1−r2

0

(1− r2)2r drdθ = π.

(18) Use the divergence theorem to compute the flux of ~F = (z5 + x, cos(xz), z2)
through the surface bounded by z = 0 and z = 1− x2 − y2.

Solution: The divergence of ~F is 1 + 2z, so∫ ∫
S

∇× ~F · d~S =

∫ ∫ ∫
R

(1 + 2z)dV

where R is the interior of S. To evaluate this it is easiest to use cylindrical
coordinates:

∫ 1

0

∫ 2π

0

∫ 1−r2

0

(1+2z)r dz dθ dr =

∫ 1

0

∫ 2π

0

(2r−3r3 +r5) dθ dr = 5/12

∫ 2π

0

dθ = 5π/6


