Math 3298 Practice Midterm

This practice test is longer than the actual exam.

1. (a) Use the formula \(\kappa = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3} \) to show that for a parameterized plane curve \((x(t), y(t)) \) the curvature is

\[
\kappa = \frac{|\dot{x}y - \dot{y}x|}{|\dot{x}^2 + \dot{y}^2|^{3/2}}
\]

(b) Use the result of part (a) to compute the curvature of \(x(t) = 1 + t^3, y(t) = t + t^2 \).

2. Classify the critical points of \(f(x, y) = 2y^2 + 2xy - y - x^3 + x + 1 \).

3. Compute the limit \(\lim_{x \to 0} \frac{x^2 + y \sin(y)}{x^2 + y^2} \) if it exists, or show why it does not exist.

4. Find the curvature of \(\vec{r}(t) = (t^2, t^3, 2t^3) \) at \(t = 1 \).

5. Use the linearization of the function \(f(x, y) = x + \ln(xy) \) at \((x, y) = (2, 1/2) \) to find an approximate value for \(f(1.9, .4) \).

6. Find three positive numbers \(x, y, \) and \(z \) such that \(x + 2y + 3z = 7 \) and for which the function \(f(x, y, z) = x^2 y^2 z^3 \) is maximized.

7. Use the chain rule to compute \(\frac{\partial z}{\partial t} \) at \(t = 2 \) if \(z = \sin(xy) \sin(y) \) and \(x = 1/t, y = f(t) \) where \(f'(2) = 3 \) and \(f(2) = \pi \).

8. Find the directions in which the directional derivative of \(f(x, y) = x^2 + 2y^2 - 4y \) at the point \((1, 1) \) has the value 1.