
Math 3298 Practice Midterm 1 Solutions

Please notify me as soon as possible if you believe there is an error in these solutions.

(1) (a) Use the formula κ =
|~r ′ × ~r ′′|
|~r ′|3

to show that for a parameterized plane

curve (x(t), y(t)) the curvature is

κ =
|ẋÿ − ẍẏ|
|ẋ2 + ẏ2|3/2

Solution: In order to use the three-dimensional curvature formula we can
embed the planar curve (x(t), y(t)) into space as ~r(t) = (x(t), y(t), 0). Then
only the third component of the cross-product ~r ′ × ~r ′′ is nonzero (since
the first and second derivative are in the x-y plane and the cross-product
must be perpendicular to them), with magnitude |ẋÿ − ẍẏ|.

(b) Use the result of part (a) to compute the curvature of x(t) = 1 + t3, y(t) =
t+ t2.

Solution: We compute all the pieces: x′ = 3t2, x′′ = 6t, y′ = 1 + 2t, y′′ = 2.
Then the curvature is

κ =
|6(t+ 1)t|

(9 t4 + 4 t2 + 4 t+ 1)
3
2

(2) Classify the critical points of f(x, y) = 2y2 + 2xy − y − x3 + x+ 1.

Solution: To find the critical points we need to solve the system

∂f

∂x
= −3x2 + 2y + 1 = 0

∂f

∂y
= 4y + 2x− 1 = 0

There are many ways to proceed. One way is to eliminate y by subtracting two
times the first equation from the second:

∂f

∂y
− 2

∂f

∂x
= 6x2 + 2x− 3 = 0.

This has roots x = −1/6±
√

19/6, and corresponding y-values y = 1/3∓
√

19/12.
To classify these two critical points we compute the discriminant

D =
∂2f

∂x2
∂2f

∂y2
−

(
∂2f

∂y∂x

)2

= (−6x)(4)− (2)2 = −24x− 4

At (−1/6 +
√

19/6, 1/3 −
√

19/12) we have D < 0 so it is a saddle point. At

(−1/6 −
√

19/6, 1/3 +
√

19/12), D > 0 and ∂2f
∂x2 > 0 so that point is a relative

minimum.
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(3) Compute the limit
x2 + y sin(y)

x2 + y2
if it exists, or show why it does not exist.

Solution: One way to think about this is to expand sin(y) in a power series
around y = 0, since the series for sin(y) converges everywhere and it will behave
like its lowest order term for small |y|:

sin(y) = y − y3

3!
+
y5

5!
− . . .

so we would expect the function to behave like

x2 + y2

x2 + y2
− y4/6

x2 + y2
+ . . . = 1− y4/6

x2 + y2
+ . . .

and for the limit to exists and be equal to 1. A proof is not expected on this type
of problem, but it is not too hard to prove if we assume the fact that |sin(y)−y|
is O(y3) as y → 0 - i.e. as y gets close to 0, sin(y) = y + ε(y), where ε(y) is a
function such that there exists positive constant M, y0 where |ε(y)| < My3 for
all |y| < |y0|.

Another approach would be to check the behavior along straight lines through
the origin, such as y = mx. The limit of the function on such a line as x → 0
can be computed by using L’Hopital’s Rule, and it is 1 for all m. This is not a
proof, but it is usually strong evidence that the limit exists.

(4) Find the curvature of ~r(t) = (t2, t3, 2t3) at t = 1.

Solution: The first two derivatives are ~r are ~r′ = (2t, 3t2, 6t2) and ~r′′ =
(2, 6t, 12t). At t = 1 these reduce to (2, 3, 6) and (2, 6, 12) respectively. Now we
can compute the curvature:

κ =
|~r′ × ~r′′|
|~r′|3

=
6
√

5

343

(The cross product at t = 1 is ~r′ × ~r′′ = (0,−12, 6).)

(5) Use the linearization of the function f(x, y) = x + lnxy at (x, y) = (2, 1/2) to
find an approximate value for f(1.9, .4).

Solution: The linearization is

L(x, y) = f |(2,1/2) +
∂f

∂x
|(2,1/2)(x− 2) +

∂f

∂y
|(2,1/2)(y − 1/2).

= 2 + ln 1 + (1 +
1

2
)(x− 2) + (2)(y − 1/2) = −2 + 3x/2 + 2y

since ∂f
∂x

= 1 + 1/x and ∂f
∂y

= 1/y.

So our approximation is L(1.9, 4) = 1.65 ≈ f(1.9, .4) = 1.62556 . . .
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(6) Find three positive numbers x, y, and z such that x+ 2y+ 3z = 7 and for which
the function f(x, y, z) = x2y2z3 is maximized.

Solution: This can be done by elimination or Lagrange multipliers. The latter
is slightly simpler. The solution will lie on the constraint g = x+2y+3z−7 = 0.
Critical points of f restricted to the set g = 0 will have λ grad(g) = grad(f) or

λ (1, 2, 3) = (λ, 2λ, 3λ) = (2xy2z3, 2x2yz3, 3x2y2z2)

Dividing the first equation by the second and third gives 1/2 = y/x and 1/3 =
2z/(3x), so y = x/2 and z = x/2. Plugging these into g = 0 gives x+ 2(x/2) +
3(x/2)− 7 = 7x/2− 7 = 0 so x = 2, y = 1, and z = 1.

(7) Use the chain rule to compute ∂z
∂t

at t = 2 if z = sin (xy) sin (y) and x = 1/t,
y = f(t) where f ′(2) = 3 and f(2) = π.

Solution:

∂z

∂t
|t=2 = (

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
)|t=2

= (y cos (xy) sin (y))(
−1

t2
) + (x cos (xy) sin (y) + sin (xy) cos (y))f ′(t)|t=2

= (π cos (xπ) sin (π))(
−1

t2
) + (x cos (xπ) sin (π) + sin (xπ) cos (π))f ′(t)

= (π cos (π/2) sin (π))(
−1

4
) + (

1

2
cos (π/2) sin (π) + sin (π/2) cos (π))3

= −3

(8) Find the directions in which the directional derivative of f(x, y) = x2 + 2y2− 4y
at the point (1, 1) has the value 1.

Solution: The directional derivative of f at (1, 1) in the direction ~u = (u1, u2)
is

∇f |(1,1) · ~u =
∂f

∂x
|(1,1)u1 +

∂f

∂y
|(1,1)u2.

So we compute the partial derivatives of f and evaluate them at (1, 1): ∂f
∂x
|(1,1) =

2x|(1,1) = 2, ∂f
∂y
|(1,1) = (4y − 4)|(1,1) = 0. Then the condition on the directional

derivative becomes

∇f |(1,1) · ~u = (2, 0) · (u1, u2) = 2u1 = 1,

so u1 = 1/2. Since ~u is a unit vector u21 + u22 = 1, and so u22 = 3/4 and the two
possible directions are ~u = (1/2,−

√
3/2) and ~u = (1/2,

√
3/2).


