Math 3298 Worksheet 3

Group members (1 to 4):	

(1) Find the length of the curve $\vec{r}(t) = (t\sqrt{2}, e^t, e^{-t})$ for t in the interval [0, 1].

(2) Find the equation for the osculating circle to the curve $\vec{r}(t) = (e^t \cos(t), e^t \sin(t), t)$ at the point (1,0,1). (The osculating circle is tangent to the curve at that point, with a curvature equal to the curvature of \vec{r} at that point. The center of the circle is in the normal direction (\vec{N}) from the contact point.)