

The Entity-Relationship Model

Chapter 2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Overview of Database Design

- Conceptual design: (ER Model is used at this stage.)
 - What are the *entities* and *relationships* in the enterprise?
 - · What information about these entities and relationships should we store in the database?
 - What are the integrity constraints or business rules that
 - · A database `schema' in the ER Model can be represented pictorially (ER diagrams).
 - · Can map an ER diagram into a relational schema.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

ER Model Basics ssn **Employees**

* Entity: Real-world object distinguishable from other objects. An entity is described (in DB) using a set of *attributes*.

name

- * Entity Set: A collection of similar entities. E.g., all employees.
 - · All entities in an entity set have the same set of attributes. (Until we consider ISA hierarchies, anyway!)
 - Each entity set has a key.
 - Each attribute has a domain.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

ER Model Basics (Contd.)

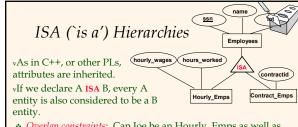
- * Relationship: Association among two or more entities. E.g., Attishoo works in Pharmacy department.
- * Relationship Set: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets E1 ... En; each relationship in R involves entities e1 E1, ..., en En
 - Same entity set could participate in different

relationship sets, or in different "roles" in same set. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

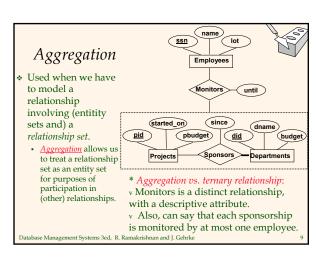
Key Constraints did Consider Works_In: **Employees** An employee can work in many departments; a dept can have many employees. In contrast, each dept has at most one manager, according to the key constraint on Manages. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Participation Constraints

Does every department have a manager?


• If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial)

· Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!)


Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

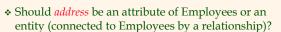
Weak Entities * A weak entity can be identified uniquely only by considering the primary key of another (owner) entity. · Owner entity set and weak entity set must participate in a one-tomany relationship set (one owner, many weak entities). · Weak entity set must have total participation in this identifying relationship set. Dependents Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

- * Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)
- * Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)
- * Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify entitities that participate in a relationship.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

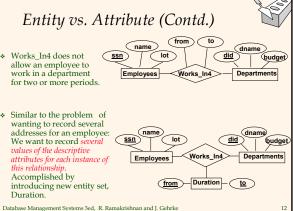
Conceptual Design Using the ER Model

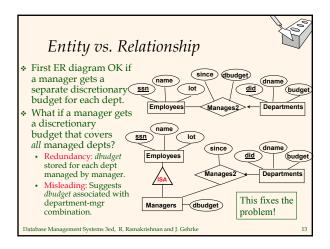
* Design choices:

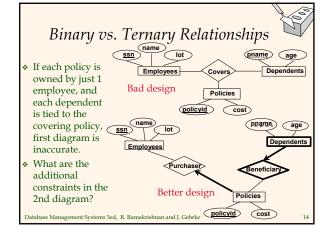

- Should a concept be modeled as an entity or an attribute?
- · Should a concept be modeled as an entity or a relationship?
- · Identifying relationships: Binary or ternary? Aggregation?

Constraints in the ER Model:

- A lot of data semantics can (and should) be captured.
- But some constraints cannot be captured in ER diagrams.


Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke


Entity vs. Attribute



- * Depends upon the use we want to make of address information, and the semantics of the data:
 - If we have several addresses per employee, address must be an entity (since attributes cannot be setvalued).
 - If the structure (city, street, etc.) is important, e.g., we want to retrieve employees in a given city, address must be modeled as an entity (since attribute values are atomic).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Binary vs. Ternary Relationships (Conta.)

- Previous example illustrated a case when two binary relationships were better than one ternary relationship.
- An example in the other direction: a ternary relation Contracts relates entity sets Parts, Departments and Suppliers, and has descriptive attribute qty. No combination of binary relationships is an adequate substitute:
 - S "can-supply" P, D "needs" P, and D "deals-with" S does not imply that D has agreed to buy P from S.
 - How do we record qty?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities, ISA hierarchies, and aggregation.
- * Note: There are many variations on ER model.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Summary of ER (Contd.)

- * Several kinds of integrity constraints can be expressed in the ER model: *key constraints, participation constraints,* and *overlap/covering constraints* for ISA hierarchies. Some *foreign key constraints* are also implicit in the definition of a relationship set.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
 - Constraints play an important role in determining the best database design for an enterprise.

Summary of ER (Contd.)

- * ER design is *subjective*. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - Entity vs. attribute, entity vs. relationship, binary or nary relationship, whether or not to use ISA hierarchies, and whether or not to use aggregation.
- Ensuring good database design: resulting relational schema should be analyzed and refined further. FD information and normalization techniques are especially useful.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke