Relational Calculus

Chapter 4, Part B

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Relational Calculus

* Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC).
* Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
- TRC: Variables range over (i.e., get bound to) tuples.
- $\overline{D R C}$: Variables range over domain elements (= field values).
- Both TRC and DRC are simple subsets of first-order logic.
* Expressions in the calculus are called formulas. An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to true.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

DRC Formulas

* Atomic formula:

- $\langle x 1, x 2, \ldots, x n\rangle \in$ Rname , or X op Y , or X op constant
- op is one of $<,>,=, \leq, \geq, \neq$
* Formula:
- an atomic formula, or
- $\neg p, p \wedge q, p \vee q$, where p and q are formulas, or
- $\exists X(p(X))$, where variable X is free in $\mathrm{p}(\mathrm{X})$, or
- $\forall X(p(X))$, where variable X is free in $\mathrm{p}(\mathrm{X})$
* The use of quantifiers $\exists X$ and $\forall X$ is said to bind X.
- A variable that is not bound is free.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Free and Bound Variables

* The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to bind X .
- A variable that is not bound is free.
$*$ Let us revisit the definition of a query:

$$
\{\langle x 1, x 2, \ldots, x n\rangle \mid p(\langle x 1, x 2, \ldots, x n\rangle)\}
$$

* There is an important restriction: the variables $\mathrm{x} 1, \ldots, \mathrm{xn}$ that appear to the left of ' \mid ' must be the only free variables in the formula $\mathrm{p}(. .$.$) .$

Find all sailors with a rating above

$$
\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in \text { Sailors } \wedge T>7\}
$$

* The condition $\langle I, N, T, A\rangle \in$ Sailors ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple.
* The term $\langle I, N, T, A\rangle$ to the left of '|' (which should be read as such that) says that every tuple $\langle I, N, T, A\rangle$ that satisfies $T>7$ is in the answer.
* Modify this query to answer:
- Find sailors who are older than 18 or have a rating under 9 , and are called 'Joe'.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Find sailors rated >7 who've reserved boat \#103
$\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors $\wedge T>7 \wedge$
$\exists I r, B r, D(\langle I r, B r, D\rangle \in \operatorname{Reserves} \wedge I r=I \wedge B r=103)$

* We have used $\exists I r, B r, D(\ldots)$ as a shorthand for $\exists \operatorname{Ir}(\exists \operatorname{Br}(\exists D(\ldots)))$
* Note the use of \exists to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Find sailors rated >7 who've reserved a red boat
$\{\langle I, N, T, A\rangle \mid\langle I, N, T, A\rangle \in$ Sailors $\wedge T>7 \wedge$
$\exists I r, B r, D(\langle I r, B r, D\rangle \in \operatorname{Reserves} \wedge I r=I \wedge$
$\exists B, B N, C\left(\langle B, B N, C\rangle \in\right.$ Boats $\wedge B=B r \wedge C={ }^{\prime}$ red' $\left.)\right) \mid$

* Observe how the parentheses control the scope of each quantifier's binding.
* This may look cumbersome, but with a good user interface, it is very intuitive. (MS Access, QBE)

Find sailors who've reserved all boats (again!)

$$
\begin{aligned}
& \{I, N, T, A\rangle|I I, N, T, A\rangle \in \text { Sailors } \wedge \\
& \forall\langle B, B N, C\rangle \in \text { Boats } \\
& \quad \quad \exists \exists|I r, B r, D\rangle \in \operatorname{Reserves}(I=I r \wedge B r=B)\}
\end{aligned}
$$

* Simpler notation, same query. (Much clearer!)
* To find sailors who've reserved all red boats:
$\ldots . . .(C \neq ' r e d ' \vee \exists\{I r, B r, D\rangle \in \operatorname{Reserves}(I=\operatorname{Ir} \wedge B r=B)\}$
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Summary

* Relational calculus is non-operational, and users define queries in terms of what they want, not in terms of how to compute it. (Declarativeness.)
* Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.
$\%$ It is known that every query that can be expressed in relational algebra can be expressed as a safe query in DRC / TRC; the converse is also true.
* Relational Completeness: Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

