Internet Applications

Chapter 7

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Lecture Overview

% Internet Concepts
< Web data formats
= HTML, XML, DTDs
% Introduction to three-tier architectures
< The presentation layer

= HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

< The middle tier

= CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Uniform Resource Identifiers

<« Uniform naming schema to identify resources on the
Internet
% A resource can be anything:
= Index.html
= mysong.mp3
" picture.jpg

<+ Example URISs:

http:/ /www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3)

Structure of URIs

http:/ /www.cs.wisc.edu/~dbbook/index.html

URI has three parts:
= Naming schema (http)
= Name of the host computer (www.cs.wisc.edu)

= Name of the resource (~dbbook/index.html)

< URLs are a subset of URIs

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Hypertext Transfer Protocol

2

¢ What is a communication protocol?
= Set of standards that defines the structure of messages
= Examples: TCP, IP, HTTP

3

What happens if you click on
www.cs.wisc.edu/~dbbook/index.html?

X

1. Client (web browser) sends HTTP request to server
2. Server receives request and replies
3. Client receives reply; makes new requests

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

HTTP (Contd.)

Client to Server: Server replies:

GET ~/index.html HTTP/1.1 HTTP/1.1 200 OK
User-agent: Mozilla/4.0 Date: Mon, 04 Mar 2002 12:00:00 GMT
Accept: text/html, image/ gif, Server: Apache/1.3.0 (Linux)
image/jpeg Last-Modified: Mon, 01 Mar 2002
09:23:24 GMT
Content-Length: 1024
Content-Type: text/html
<HTML> <HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet
Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

HTTP Protocol Structure

HTTP Requests
%+ Request line: GET ~/index.html HTTP/1.1

= GET: Http method field (possible values are GET and POST,
more later)

~/index.html: URI field
HTTP/1.1: HTTP version field

<+ Type of client: ~ User-agent: Mozilla/4.0

< What types of files will the client accept:
Accept: text/html, image/ gif, image/jpeg

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

HTTP Protocol Structure (Contd.)

HTTP Responses
< Status line: HTTP/1.1 200 OK
= HTTP version: HTTP/1.1
= Status code: 200
= Server message: OK
= Common status code/server message combinations:
* 200 OK: Request succeeded
* 400 Bad Request: Request could not be fulfilled by the server
* 404 Not Found: Requested object does not exist on the server
* 505 HTTP Version not Supported
< Date when the object was created:
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT
+ Number of bytes being sent: Content-Length: 1024
<+ What type is the object being sent: Content-Type: text/html
% Other information such as the server type, server time, etc.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Some Remarks About HTTP

« HTTP is stateless
= No “sessions”
= Every message is completely self-contained
No previous interaction is “remembered” by the protocol
Tradeoff between ease of implementation and ease of
application development: Other functionality has to be built
on top
% Implications for applications:
= Any state information (shopping carts, user login-information)
need to be encoded in every HTTP request and response!
= Popular methods on how to maintain state:
* Cookies (later this lecture)
¢ Dynamically generate unique URL'’s at the server level (later this

Web Data Formats

<« HTML

= The presentation language for the Internet

= Standardizing schemas for Xml

« XSLT (not covered in the book)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

lecture)
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9
=
<
=
<HTML> <h3>Fiction</h3>
<HEAD></HEAD> Waiting for the Mahatma
<BODY>
<h1>Barns and Nobble Internet .
Bookstore</h1> Author: R.K. Narayan
. . Published 1981
Our inventory:

<h3>Science</h3> The English Teacher
The Character of Physical
Law Author: RK. Narayan
 Published 1980
Author: Richard P k
Feynman gaaperbacks /L
Published 1980
Hardcover
 </BODY>
</HTML>
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

HTML: A Short Introduction

< HTML is a markup language
< Commands are tags:
= Start tag and end tag

= Examples:
* <HTML> ... </HTML>
e ...

< Many editors automatically generate HTML
directly from your document (e.g., Microsoft
Word has an “Save as html” facility)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

XML: An Example

<2xml version="1.0" encoding="UTF-8" standalone="yes'?>
<BOOKLIST>
<BOOK genre="Science" format="Hardcover'>
<AUTHOR>
<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</ PUBLISHED>
</BOOK>
<BOOK genre="Fiction">
<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>
</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>
</BOOK>
<BOOK genre="Fiction">
<AUTHOR>
<FIRSTNAME>R K.</ FIRSTNAME><LASTNAME>Narayan</LASTNAME>
</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED>1980</PUBLISHED>
</BOOK>
</BOOKLIST>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

XML - What's The Point?

% You can include your data and a description of what
the data represents
= This is useful for defining your own language or protocol
« Example: Chemical Markup Language
<molecule>
<weight>234.5</weight>
<Spectra>...</Spectra>
<Figures>...</Figures>
</molecule>
% XML design goals:
= XML should be compatible with SGML
= It should be easy to write XML processors
= The design should be formal and precise

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

S
HTML: Sample Commands
<« <HTML>:
< : unordered list
< : list entry
< <hl>: largest heading
% <h2>: second-level heading, <h3>, <h4>
analogous
« Title: Bold
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13
QQQ
XML - The Extensible Markup Language
< Language
= A way of communicating information
< Markup
= Notes or meta-data that describe your data or
language
<+ Extensible
= Limitless ability to define new languages or data
sets
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15
Q%Q
XML - Structure
< XML: Confluence of SGML and HTML
< Xml looks like HTML
< Xml is a hierarchy of user-defined tags called
elements with attributes and data
+ Data is described by elements, elements are
described by attributes
<BOOK genrei“Science” format="Hardcover">...</BOOK>
T attribute T
data 4
open tag attribute value cicsingliag
element name
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

XML - Elements

<BOOK genre="Science" format="Hardcover">...</BOOK>

i f
T attribute T
open tag attribute value ~ data gesnolag

element name o
< Xml is case and space sensitive

« Element opening and closing tag names must be identical
« Opening tags: “<” + element name + “>"

<+ Closing tags: “</” + element name + “>"

<+ Empty Elements have no data and no closing tag:

= They begin with a “<” and end with a “/>”
<BOOK/>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

S
)
XML - Attributes
<BOOK genre="Science" format="Hardcover">...</BOOK>
i !
attribute
open tag i closing tag
A attribute value data
% Attributes provide additional information for element tags.
% There can be zero or more attributes in every element; each one
has the the form:
attribute_name="attribute_value'
- There is no space between the name and the “=""
- Attribute values must be surrounded by “ or * characters
< Multiple attributes are separated by white space (one or more
spaces or tabs).
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19
s
)
XML - Nesting & Hierarchy
< Xml tags can be nested in a tree hierarchy
%+ Xml documents can have only one root tag
+ Between an opening and closing tag you can insert:
1. Data
2. More Elements
3. A combination of data and elements
<root>
<tagl>
Some Text
<tag2>More</tag2>
</tagl>
</root>
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2
S
S
DTD - Document Type Definition
« A DTD is a schema for Xml data
% Xml protocols and languages can be
standardized with DTD files
< A DTD says what elements and attributes are
required or optional
= Defines the formal structure of the language
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

=
=
S
<BOOK genre="Science" format="Hardcover">...</BOOK>
| f
attribute L
opentag attribute value closing tag
element name data
« Xml data is any information between an opening and closing tag
+ Xml data must not contain the ‘<’ or >’ characters
< Comments:
<I- comment ->
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20
=
<=
S
< Storage is done just like an n-ary tree (DOM)
<root> Type: Element_Node
Name: Element
<tagl> Value: Root
Some Text
Type: Element_Node
< > < >
tag2>More</tag2 Name: Element
</tagl> Value: tagl
</root>
Type: Text_Node Type: Element_Node
Name: Text Name: Element
Value: Some Text Value: tag2
Type: Text_Node
Name: Text
Value: More
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2
=
=
=

DTD - An Example

<?xml version="1.0'?>
<IELEMENT Basket (Cherry+, (Apple | Orange)*) >
<IELEMENT Cherry EMPTY>
<IATTLIST Cherry flavor CDATA #REQUIRED>
</ELEMENT Apple EMPTY>
<IATTLIST Apple color CDATA #REQUIRED>
<IELEMENT Orange EMPTY>
<IATTLIST Orange location ‘Florida’>

.<Basket> .<Basket>

<Cherry flavor="good'/> <Apple/>
<Apple color="red’/> <Cherry flavor="good’/>
<Apple color="green’/> <Orange/>

</Basket> </Basket>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

=
=
@

DTD - IELEMENT

<IELEMENT Basket (Cherry+, (Apple | Orange)*) >

-

Name Children
< |[ELEMENT declares an element name, and

what children elements it should have
< Content types:
= Other elements
= #PCDATA (parsed character data)
= EMPTY (no content)
= ANY (no checking inside this structure)
= A regular expression

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

DTD - |[ELEMENT (Contd.)

+ A regular expression has the following
structure:
= expy, exp,, exps, ..., expy: A list of regular
expressions

= exp*: An optional expression with zero or more
occurrences

= exp+: An optional expression with one or more
occurrences

= exp; | exp, | ... | exp,: A disjunction of expressions

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

=
=
@

<IATTLIST Cherry flavor CDATA #REQUIRED>
Element Attribute Type Flag

DTD - |ATTLIST

<!IATTLIST Orange location CDATA #REQUIRED

color ‘orange’>
< IATTLIST defines a list of attributes for an
element

% Attributes can be of different types, can be
required or not required, and they can have
default values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

DTD - Well-Formed and Valid

<?xml version='1.0'?>
<IELEMENT Basket (Cherry+)>
<!ELEMENT Cherry EMPTY>
<IATTLIST Cherry flavor CDATA #REQUIRED>

Not Well-Formed Well-Formed but Invalid

<basket> <Job>
<Cherry flavor=good> <Location>Home</Location>
</Basket> </Job>
Well-Formed and Valid
<Basket>
<Cherry flavor='good’/>
</Basket>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

=
<
@

% More and more standardized DTDs will be developed
= MathML
* Chemical Markup Language

XML and DTDs

< Allows light-weight exchange of data with the same
semantics

% Sophisticated query languages for XML are available:
= Xquery
= XPath

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Lecture Overview

% Internet Concepts
< Web data formats
= HTML, XML, DTDs
% Introduction to three-tier architectures
+ The presentation layer

= HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

< The middle tier

= CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Components of Data-Intensive
Systems

Three separate types of functionality:
< Data management

< Application logic

< Presentation

« The system architecture determines whether
these three components reside on a single
system (“tier) or are distributed across several
tiers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Single-Tier Architectures

All functionality combined intoa s GRAPHIC
single tier, usually on a
mainframe
= User access through dumb
terminals

Advantages:
= Easy maintenance and
administration
Disadvantages:
= Today, users expect
graphical user interfaces.

= Centralized computation of
all of them is too much for a
central system

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Client-Server Architectures

Work division: Thin client % GRAPHIC
= Client implements only the
graphical user interface
= Server implements business
logic and data management

« Work division: Thick client
= Client implements both the
graphical user interface and the
business logic
= Server implements data
management

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Client-Server Architectures (Contd.

Disadvantages of thick clients
= No central place to update the business logic

= Security issues: Server needs to trust clients

* Access control and authentication needs to be managed at
the server

¢ Clients need to leave server database in consistent state
* One possibility: Encapsulate all database access into stored
procedures
= Does not scale to more than several 100s of clients
¢ Large data transfer between server and client
* More than one server creates a problem: x clients, y
servers: x*y connections

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

The Three-Tier Architecture

Presentation tier Client Program (Web Browser)

Middle tier Application Server

Data management

’ Database System
tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

The Three Layers

Presentation tier
= Primary interface to the user

= Needs to adapt to different display devices (PC, PDA, cell
phone, voice access?)

Middle tier

= Implements business logic (implements complex actions,
maintains state between different steps of a workflow)

= Accesses different data management systems

Data management tier
= One or more standard database management systems

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Example 1: Airline reservations

< Build a system for making airline reservations
<+ What is done in the different tiers?
< Database System
= Airline info, available seats, customer info, etc.
+ Application Server

= Logic to make reservations, cancel reservations,
add new airlines, etc.

% Client Program

= Log in different users, display forms and human-
readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Example 2: Course Enrollment

+ Build a system using which students can enroll
in courses

< Database System

= Student info, course info, instructor info, course
availability, pre-requisites, etc.

< Application Server

= Logic to add a course, drop a course, create a new
course, etc.

% Client Program

= Log in different users (students, staff, faculty),
display forms and human-readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Advantages of the Three-Tier
Architecture

+ Heterogeneous systems

= Tiers can be independently maintained, modified, and replaced
% Thin clients

= Only presentation layer at clients (web browsers)
+ Integrated data access

= Several database systems can be handled transparently at the middle
tier

= Central management of connections
% Scalability

= Replication at middle tier permits scalability of business logic
% Software development

= Code for business logic is centralized

= Interaction between tiers through well-defined APIs: Can reuse
standard components at each tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

QQQ
Technologies
Client Program ZY;/:[ir -
SCrl,
(Web Browser) XSLT
L JSP
Application Server Serviets
(Tomcat, Apache) Cookies
CGI
Database System XML
(DB2) Stored Procedures
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39
Q%Q

Lecture Overview

% Internet Concepts
<+ Web data formats
= HTML, XML, DTDs
% Introduction to three-tier architectures
< The presentation layer

= HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

< The middle tier

= CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Overview of the Presentation Tier

% Recall: Functionality of the presentation tier
= Primary interface to the user

= Needs to adapt to different display devices (PC,
PDA, cell phone, voice access?)

= Simple functionality, such as field validity checking
«+ We will cover:
= HTML Forms: How to pass data to the middle tier
= JavaScript: Simple functionality at the presentation
tier

= Style sheets: Separating data from formatting

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

HTML Forms

%+ Common way to communicate data from client to
middle tier
% General format of a form:

= <FORM ACTION="page jsp” METHOD="GET"
NAME="LoginForm”>

</FORM>
%+ Components of an HTML FORM tag:
= ACTION: Specifies URI that handles the content
= METHOD: Specifies HTTP GET or POST method

= NAME: Name of the form; can be used in client-side scripts to
refer to the form

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43
=
)
Passing Arguments

Two methods: GET and POST
<« GET
= Form contents go into the submitted URI
= Structure:
action?namel=valuel&name2=value2&name3=value3
¢ Action: name of the URI specified in the form

* (name,value)-pairs come from INPUT fields in the form; empty
fields have empty values (“name=")

= Example from previous password form:
TableOfContents.jsp?userid=john&password=johnpw

= Note that the page named action needs to be a program, script,
or page that will process the user input

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

HTML Forms: A Complete Example

<form method="POST" action="TableOfContents.jsp">
<table align = "center" border="0" width="300">

<tr>
<td>Userid</td>
<td><input type="text" name="userid" size="20"></td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password" size="20"></td>
</tr>
<tr>
<td align = "center"><input type="submit" value="Login"
name="submit"></td>
</tr>
</table>
</form>
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

=
S
Inside HTML Forms
< INPUT tag
= Attributes:
¢ TYPE: text (text input field), password (text input field where
input is, reset (resets all input fields)
* NAME: symbolic name, used to identify field value at the middle
tier
* VALUE: default value
= Example: <INPUT TYPE="text” Name="title”>
« Example form:
<form method="POST" action="TableOfContents jsp">
<input type="text" name="userid">
<input type="password" name="password">
<input type="submit" value="Login" name="submit'>
<input type="reset” value="Clear”>
</form>
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44
-
HTTP GET: Encoding Form Fields
< Form fields can contain general ASCII
characters that cannot appear in an URI
< A special encoding convention converts such
field values into “URI-compatible” characters:
1. Convert all “special” characters to %xyz, were xyz
is the ASCII code of the character. Special
characters include &, =, +, %, etc.
2. Convert all spaces to the “+” character
3. Glue (name,value)-pairs from the form INPUT
tags together with “&” to form the URI
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46
=

JavaScript

% Goal: Add functionality to the presentation tier.
% Sample applications:
= Detect browser type and load browser-specific page
= Form validation: Validate form input fields
= Browser control: Open new windows, close existing windows
(example: pop-up ads)
+ Usually embedded directly inside the HTML with the
<SCRIPT> ... </SCRIPT> tag.
+ <SCRIPT> tag has several attributes:
= LANGUAGE: specifies language of the script (such as

javascript)

= SRC: external file with script code

= Example:
<SCRIPT LANGUAGE="JavaScript” SRC="validate.js>
</SCRIPT>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

JavaScript (Contd.)

% If <SCRIPT> tag does not have a SRC attribute, then
the JavaScript is directly in the HTML file.
<+ Example:
<SCRIPT LANGUAGE="JavaScript”>
<!-- alert(“Welcome to our bookstore”)
//~>
</SCRIPT>
+ Two different commenting styles
= <!-- comment for HTML, since the following JavaScript code
should be ignored by the HTML processor

= // comment for JavaScript in order to end the HTML
comment

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

JavaScript: A Complete Example

HTML Form: Associated JavaScript:

<form method="POST" <script language="javascript'>

action="TableOfContents.jsp"> function testLoginEmpty()

<input type="text" { X B .
name="userid"> loginForm = document.LoginForm

<input type="password" if ((loginForm.userid.value =="") | |

name="password">
<input type="submit" {

value="Login"

name="submit">

(loginForm.password.value == ""))

alert('Please enter values for userid and
password.");

. @ P return false;
<input type="reset’

value="Clear”> !
else return true;
</form> !

</script>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

CSS: Cascading Style Sheets

< Defines how to display HTML documents
%+ Many HTML documents can refer to the same CSS
= Can change format of a website by changing a single style sheet

= Example:
<LINK REL="style sheet” TYPE="text/css” HREF="books.css” />

Each line consists of three parts:
selector {property: value}
% Selector: Tag whose format is defined
< Property: Tag's attribute whose value is set
% Value: value of the attribute

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

=
=)
JavaScript (Contd.)
+ JavaScript is a complete scripting language
= Variables
= Assignments (=, +=, ...)
= Comparison operators (<,>,...), boolean operators
(&&, |, 1)
= Statements
¢ if (condition) {statements;} else {statements;}
e for loops, do-while loops, and while-loops
= Functions with return values
¢ Create functions using the function keyword
e f(argl, ..., argk) {statements;}
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50
=
Stylesheets
+ Idea: Separate display from contents, and adapt
display to different presentation formats
< Two aspects:
= Document transformations to decide what parts of the
document to display in what order
= Document rending to decide how each part of the document is
displayed
< Why use stylesheets?
= Reuse of the same document for different displays
= Tailor display to user’s preferences
= Reuse of the same document in different contexts
% Two stylesheet languages
= Cascading style sheets (CSS): For HTML documents
= Extensible stylesheet language (XSL): For XML documents
Database Management Systems 3¢d, R. Ramakrishnan and J. Gehrke 52
S

CSS: Cascading Style Sheets

Example style sheet:

body {background-color: yellow}
h1 {font-size: 36pt}

h3 {color: blue}

p {margin-left: 50px; color: red}

The first line has the same effect as:
<body background-color="yellow>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

XSL

%+ Language for expressing style sheets
= More at: http:/ /www.w3.org/Style/XSL,

% Three components

= XSLT: XSL Transformation language
¢ Can transform one document to another
* More at http:/ /www.w3.org/TR/xslt

= XPath: XML Path Language
¢ Selects parts of an XML document
* More at http:/ /www.w3.org/TR/xpath

= XSL Formatting Objects
¢ Formats the output of an XSL transformation
* More at http:/ /www.w3.org/TR/xsl

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

Lecture Overview

% Internet Concepts
< Web data formats
= HTML, XML, DTDs
% Introduction to three-tier architectures
< The presentation layer

= HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

< The middle tier

= CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Overview of the Middle Tier

% Recall: Functionality of the middle tier
= Encodes business logic
= Connects to database system(s)
= Accepts form input from the presentation tier
= Generates output for the presentation tier
+ We will cover
CGI: Protocol for passing arguments to programs running at
the middle tier
Application servers: Runtime environment at the middle tier
Servlets: Java programs at the middle tier
JavaServerPages: Java scripts at the middle tier

Maintaining state: How to maintain state at the middle tier.
Main focus: Cookies.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 57

CGI: Common Gateway Interface

% Goal: Transmit arguments from HTML forms to
application programs running at the middle tier

% Details of the actual CGI protocol unimportant >
libraries implement high-level interfaces

« Disadvantages:

The application program is invoked in a new process at every
invocation (remedy: FastCGI)

No resource sharing between application programs (e.g.,
database connections)

Remedy: Application servers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 58

CGI: Example

<+ HTML form:
<form action="findbooks.cgi” method=POST>
Type an author name:

ext” name="authorName”>

ubmit” value="Send it">
<input type="reset” value="Clear form”>
</form>

% Perl code:
use CGI;
$dataln=new CGI;
$dataln->header();
$authorName=$dataln->param(‘authorName’);
print(“<HTML><TITLE> Argument passing test</TITLE>");
print(“The author name is “ + $authorName);
print(“</HTML>");
exit;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 59

Application Servers

« Idea: Avoid the overhead of CGI
= Main pool of threads of processes
= Manage connections
= Enable access to heterogeneous data sources

= Other functionality such as APIs for session
management

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 60

Application Server: Process Structu

Process Structure

‘ Web Browser ‘ w" Web Server‘

C++ Application

Application Server JDBC

Servlets

+ Java Servlets: Java code that runs on the middle tier
= Platform independent
= Complete Java API available, including JDBC

Example:
import java.io.*;
import java.servlet.*;
import java.servlet http.*;

a

public class ServetTemplate extends HttpServlet {
public void doGet(HTTPServletRequest request,
HTTPServletResponse response)
throws SerletExpection, IOException {
PrintWriter out=response.getWriter();
out.println(“Hello World”);

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 62

-
ODBC
I BN N . D
I BN N .
Pool of Servlets
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 61
=
S

Servlets (Contd.)

« Life of a servlet?
= Webserver forwards request to servlet container
= Container creates servlet instance (calls init()
method; deallocation time: calls destroy() method)
= Container calls service() method

* service() calls doGet() for HTTP GET or doPost() for HTTP
POST

¢ Usually, don’t override service(), but override doGet() and
doPost()

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 63

Servlets: A Complete Example

public class ReadUserName extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpSevletResponse response)

throws ServletException, IOException {

reponse.setContentType(“text/html”);

PrintWriter out=response.getWriter();

out.println(“<HTML><BODY>\n \n” +
“" + request.getParameter(“userid”) + “\n” +
“" + request.getParameter(“password”) + “\n” +
“\n<BODY></HTML>");

public void doPost(HttpServletRequest request,
HttpSevletResponse response)
throws ServletException, [OException {
doGet(request,response);

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 64

Java Server Pages

< Servlets
= Generate HTML by writing it to the “PrintWriter”
object
= Code first, webpage second
% JavaServerPages

= Written in HTML, Servlet-like code embedded in
the HTML

= Webpage first, code second
= They are usually compiled into a Servlet

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 65

JavaServerPages: Example

<html>
<head><title>Welcome to B&N</title></head>
<body>
<h1>Welcome back!</h1>
<% String name="NewUser”;
if (request.getParameter(“username”) != null) {
name=request.getParameter("“username”);

}
%>
You are logged on as user <%=name %>
<p>
</body>
</html>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 66

Maintaining State

HTTP is stateless.

< Advantages
= Easy to use: don’t need anything
= Great for static-information applications
®= Requires no extra memory space

+ Disadvantages

= No record of previous requests means
* No shopping baskets
* No user logins
* No custom or dynamic content
* Security is more difficult to implement

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 67

Application State

< Server-side state

= Information is stored in a database, or in the
application layer’s local memory

< Client-side state

= Information is stored on the client’s computer in the
form of a cookie

< Hidden state

= Information is hidden within dynamically created
web pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 68

Application State

So many kinds of
state...

...how will I choose?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 69

Server-Side State

< Many types of Server side state:
< 1. Store information in a database
= Data will be safe in the database

= BUT: requires a database access to query or update
the information

« 2. Use application layer’s local memory
= Can map the user’s IP address to some state

= BUT: this information is volatile and takes up lots of
server main memory

5 million IPs = 20 MB

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 70

Server-Side State

< Should use Server-side state maintenance for
information that needs to persist
= Old customer orders
= “Click trails” of a user’s movement through a site
= Permanent choices a user makes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 71

Client-side State: Cookies

% Storing text on the client which will be passed
to the application with every HTTP request.
= Can be disabled by the client.

= Are wrongfully perceived as "dangerous", and
therefore will scare away potential site visitors if
asked to enable cookies!

% Are a collection of (Name, Value) pairs

Database Management Systems 3ed, R. Ramakrishnan and héﬁ‘hﬁm B e

Client State: Cookies

% Advantages
= Easy to use in Java Servlets / JSP
* Provide a simple way to persist non-essential data on the client even
when the browser has closed
¢ Disadvantages
= Limit of 4 kilobytes of information
= Users can (and often will) disable them
< Should use cookies to store interactive state
= The current user’s login information
= The current shopping basket
= Any non-permanent choices the user has made

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 73

Accessing A Cookie

Cookie[] cookies = request.getCookies();

String theUser;

for (int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];

i1f (cookie.getName () .equals (“username”))
theUser = cookie.getValue();

}

// at this point theUser == “username”
% Cookies need to be accessed BEFORE you set your response header:

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 75

Hidden State

% Often users will disable cookies
% You can “hide” data in two places:
= Hidden fields within a form
= Using the path information
< Requires no “storage” of information because
the state information is passed inside of each
web page

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 77

=
S
Creating A Cookie
Cookie myCookie =
new Cookie (“username", “jeffd"):;
response.addCookie (userCookie) ;
> You can create a cookie at any time
@& TN
< .\
& N\
& S
e /
@ <
&
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 74
-
Cookie Features
Cookies can have
= A duration (expire right away or persist even after
the browser has closed)
= Filters for which domains/directory paths the
cookie is sent to
% See the Java Servlet API and Servlet Tutorials
for more information
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 76
=
-

Hidden State: Hidden Fields

% Declare hidden fields within a form:
= <input type="hidden’ name="user’
value="username’/>

< Users will not see this information (unless they
view the HTML source)

< If used prolifically, it’s a killer for performance
since EVERY page must be contained within a
form.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 78

Hidden State: Path Information

« Path information is stored in the URL request:
http://server.com/index.htm?user=jeffd
+ Can separate ‘fields” with an & character:
index.htm?user=jeffd&preference=pepsi
< There are mechanisms to parse this field in
]ava. Check out the javax.servlet.http.HttpUtils
parserQueryString () method.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 79

Multiple state methods

« Typically all methods of state maintenance are
used:

= User logs in and this information is stored in a
cookie

User issues a query which is stored in the path
information

User places an item in a shopping basket cookie
User purchases items and credit-card information
is stored/retrieved from a database

User leaves a click-stream which is kept in a log
on the web server (which can later be analyzed)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

80

Summary

We covered:
< Internet Concepts (URIs, HTTP)
<+ Web data formats
= HTML, XML, DTDs
+ Three-tier architectures
+ The presentation layer
= HTML forms; HTTP Get and POST, URL encoding; Javascript;
Stylesheets. XSLT
+ The middle tier

= CGI, application servers, Servlets, JavaServerPages, passing
arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 81

