
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Query Evaluation
Plan: Tree of R.A. ops, with choice of alg for each op.

Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

Two main issues in query optimization:
For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
How is the cost of a plan estimated?

Ideally: Want to find best plan. Practically: Avoid
worst plans!
We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Some Common Techniques
Algorithms for evaluating relational operators
use some simple ideas extensively:

Indexing: Can use WHERE conditions to retrieve
small set of tuples (selections, joins)
Iteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)
Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Statistics and Catalogs

Need information about the relations and indexes
involved. Catalogs typically contain at least:

tuples (NTuples) and # pages (NPages) for each relation.
distinct key values (NKeys) and NPages for each index.
Index height, low/high key values (Low/High) for each
tree index.

Catalogs updated periodically.
Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Access Paths
An access path is a method of retrieving tuples:

File scan, or index that matches a selection (in the query)
A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.

E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Complex Selections

Selection conditions are first converted to conjunctive
normal form (CNF):
(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)
We only discuss case with no ORs; see text if you are
curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

One Approach to Selections

Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:

Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.
Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.
Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Using an Index for Selections
Cost depends on #qualifying tuples, and
clustering.

Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large w/o
clustering).
In example, assuming uniform distribution of names,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Projection
The expensive part is removing duplicates.

SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.

Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)
Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and eliminate
duplicates.
If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Join: Index Nested Loops

If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

Cost: M + ((M*pR) * cost of finding matching S tuples)
For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

Clustered index: 1 I/O (typical), unclustered: upto 1 I/O
per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Examples of Index Nested Loops

Hash-index (Alt. 2) on sid of Sailors (as inner):
Scan Reserves: 1000 page I/Os, 100*1000 tuples.
For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

Hash-index (Alt. 2) on sid of Reserves (as inner):
Scan Sailors: 500 page I/Os, 80*500 tuples.
For each Sailors tuple: 1.2 I/Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Join: Sort-Merge (R S)

Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.
At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.
Then resume scanning R and S.

R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

><
i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Example of Sort-Merge Join

Cost: M log M + N log N + (M+N)
The cost of scanning, M+N, could be M*N (very unlikely!)

With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Highlights of System R Optimizer

Impact:
Most widely used currently; works well for < 10 joins.

Cost estimation: Approximate art at best.
Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.
Considers combination of CPU and I/O costs.

Plan Space: Too large, must be pruned.
Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost Estimation

For each plan considered, must estimate cost:
Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)
Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Size Estimation and Reduction Factors

Consider a query block:
Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.
Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

Implicit assumption that terms are independent!
Term col=value has RF 1/NKeys(I), given index I on col
Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Schema for Examples

Similar to old schema; rname added for variations.
Reserves:

Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
Sailors:

Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Motivating Example

Cost: 500+500*1000 I/Os
By no means the worst plan!
Misses several opportunities:
selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.
Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Alternative Plans 1
(No Indexes)

Main difference: push selects.
With 5 buffers, cost of plan:

Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).
Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
Total: 3560 page I/Os.

If we used BNL join, join cost = 10+4*250, total cost = 2770.
If we `push’ projections, T1 has only sid, T2 only sid and sname:

T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Alternative Plans 2
With Indexes

With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.
INL with pipelining (outer is not
materialized).

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

v Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Summary
There are several alternative evaluation algorithms for each
relational operator.
A query is evaluated by converting it to a tree of operators and
evaluating the operators in the tree.
Must understand query optimization in order to fully
understand the performance impact of a given database design
(relations, indexes) on a workload (set of queries).
Two parts to optimizing a query:

Consider a set of alternative plans.
• Must prune search space; typically, left-deep plans only.

Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

