Inference in Bayesian networks

Chapter 14.4-5

Chapter 14.4–5 1

Chapter 14.4-5 3

Chapter 14.4-5 5

Outline

- ♦ Exact inference by enumeration
- ♦ Exact inference by variable elimination
- $\diamondsuit\;$ Approximate inference by stochastic simulation
- ♦ Approximate inference by Markov chain Monte Carlo

Chapter 14.4–5 2

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}(X_i|\mathbf{E}=\mathbf{e})$ $\textbf{e.g.,}\ P(NoGas|Gauge=empty,Lights=on,Starts=false)$

Conjunctive queries: $P(X_i, X_j | E = e) = P(X_i | E = e)P(X_j | X_i, E = e)$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

 $\mathbf{P}(B|j,m)$

 $= \mathbf{P}(B,j,m)/P(j,m)$ $=\alpha \dot{\mathbf{P}}(B,j,m)$

 $= \alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:

 $\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a)$ $= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) P(m|a)$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Chapter 14.4-5 4

Enumeration algorithm

function Enumeration-Ask (X, \mathbf{e}, bn) returns a distribution over X $\mathbf{inputs} \text{: } \textit{X}\text{, } \mathsf{the} \mathsf{ query} \mathsf{ variable}$ ${f e}$, observed values for variables ${f E}$

 $\mathit{bn},$ a Bayesian network with variables $\{X\}\,\cup\,\mathbf{E}\,\cup\,\mathbf{Y}$

 $\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty

for each value x_i of X do extend e with value x_i for X

 $\mathbf{Q}(x_i) \leftarrow \text{Enumerate-All(Vars[bn], e)}$ return Normalize(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number

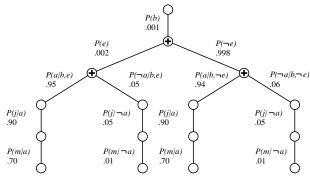
if Empty?(vars) then return 1.0 $Y \leftarrow \text{First}(vars)$

 $\mathbf{if}\ Y \ \mathsf{has}\ \mathsf{value}\ y \ \mathsf{in}\ \mathbf{e}$

then return $P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e)}$ else return Σ_y $P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), e}_y)$

where e_y is e extended with Y = y

Evaluation tree



Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

 $\begin{array}{l} \mathbf{P}(B|j,m) \\ &= \alpha \underbrace{\mathbf{P}(B)}_{B} \underbrace{\sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{\mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{M} \underbrace{P(m|a)}_{M}}_{M} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{A} \underbrace{P(j|a)}_{f_{M}} f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} \mathbf{P}(a|B,e)}_{f_{M}} \underbrace{P(j|a)}_{f_{M}} f_{M}(a) \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{E} \underbrace{\sum_{a} f_{A}(a,b,e)}_{f_{J}} f_{J}(a) \underbrace{f_{M}(a)}_{f_{M}} \\ &= \alpha \mathbf{P}(B) \underbrace{\sum_{e} P(e)}_{f_{L}} \underbrace{f_{AJM}(b,e)}_{f_{L}} \underbrace{\mathbf{Sum out } A}_{f_{M}} \\ &= \alpha f_{B}(b) \cdot f_{L_{L}}^{E} f_{AJM}(b) \end{aligned}$

Chapter 14.4-5 7

Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

$$\sum_{x} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_{x} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$

assuming f_1,\ldots,f_i do not depend on X

Pointwise product of factors f_1 and f_2 :

$$f_1(x_1, \dots, x_j, y_1, \dots, y_k) \times f_2(y_1, \dots, y_k, z_1, \dots, z_l)$$

$$= f(x_1, \dots, x_j, y_1, \dots, y_k, z_1, \dots, z_l)$$
E.g., $f_1(a, b) \times f_2(b, c) = f(a, b, c)$

Chapter 14.4-5 8

Variable elimination algorithm

function ELIMINATION-Ask(X, e, bn) returns a distribution over X inputs: X, the query variable
e, evidence specified as an event bn, a belief network specifying joint distribution $P(X_1, \ldots, X_n)$ $factors \leftarrow []$; $vars \leftarrow \text{Reverse}(\text{Vars}[bn])$ for each var in vars do $factors \leftarrow [\text{Make-Factor}(var, e)|factors]$ if var is a hidden variable then $factors \leftarrow \text{Sum-Out}(var, factors)$ return NORMALIZE(POINTWISE-PRODUCT(factors))

Chapter 14.4–5 9

Irrelevant variables

Consider the query P(JohnCalls|Burglary = true)

$$P(J|b) = \alpha P(b) \sum_{e} P(e) \sum_{e} P(a|b,e) P(J|a) \sum_{e} P(m|a)$$

Sum over m is identically 1; M is **irrelevant** to the query

Thm 1: Y is irrelevant unless $Y \in Ancestors(\{X\} \cup \mathbf{E})$

Here, X = JohnCalls, $\mathbf{E} = \{Burglary\}$, and $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$ so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

Chapter 14.4–5 10

Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: \mathbf{A} is $\underline{\mathsf{m}}$ -separated from \mathbf{B} by \mathbf{C} iff separated by \mathbf{C} in the moral graph

Thm 2: Y is irrelevant if m-separated from X by ${\bf E}$

For $P(JohnCalls|Alarm=true)\mbox{, both } Burglary \mbox{ and } Earthquake \mbox{ are irrelevant }$

Complexity of exact inference

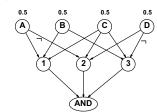
Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

1. A v B v C
2. C v D v ¬A
3. B v C v ¬D

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to $\mathbf{counting}$ 3SAT models \Rightarrow #P-complete



Chapter 14.4-5 11

Inference by stochastic simulation

Basic idea:

- 1) Draw N samples from a sampling distribution S
- 2) Compute an approximate posterior probability \hat{P}
- 3) Show this converges to the true probability P

0.5 Coin

Chapter 14.4-5 13

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

 $\begin{aligned} & \textbf{function } & \textbf{PRIOR-SAMPLE}(bn) \textbf{ returns} \text{ an event sampled from } bn \\ & \textbf{inputs} \colon bn, \textbf{ a belief network specifying joint distribution } & \textbf{P}(X_1, \dots, X_n) \\ & \textbf{x} \leftarrow \textbf{an event with } n \textbf{ elements} \\ & \textbf{for } i = 1 \textbf{ to } n \textbf{ do} \\ & x_i \leftarrow \textbf{a random sample from } & \textbf{P}(X_i \mid parents(X_i)) \\ & \textbf{given the values of } & Parents(X_i) \textbf{ in } \textbf{ x} \\ & \textbf{return } \textbf{ x} \end{aligned}$

Chapter 14.4-5 14

Example P(C) .50 Cloudy P(S|C) C | P(R|C)Rain Sprinkler T .10 T .80 F .50 .20 Wet Grass S R P(W|S,R)

T T

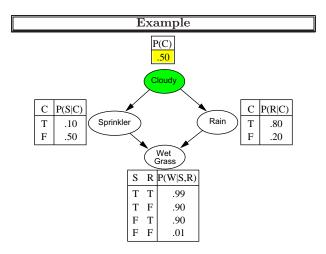
T F

F T

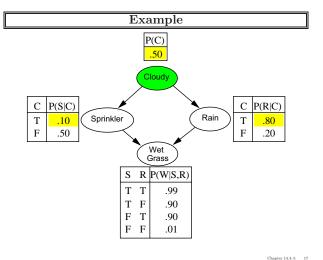
F F

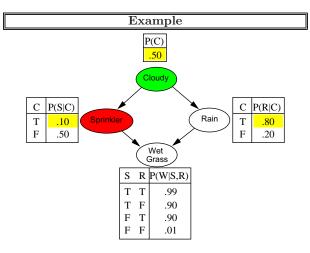
.99 .90 .90 .01

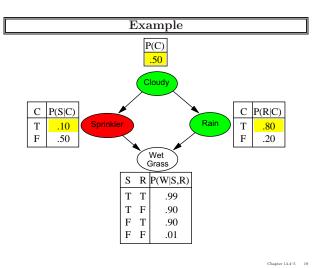
Chapter 14.4–5 15

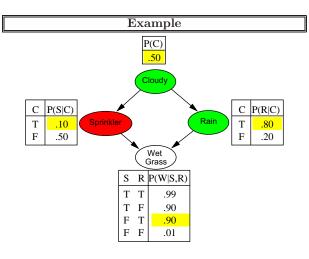


Chapter 14.4–5 16

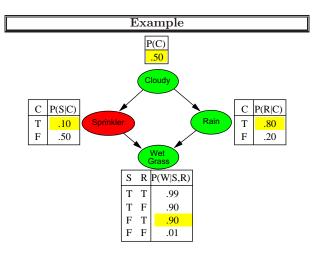








Chapter 14.4–5 20



Chapter 14.4–5 21

Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event $S_{PS}(x_1\dots x_n)=\prod_{i=1}^n P(x_i|parents(X_i))=P(x_1\dots x_n)$ i.e., the true prior probability

E.g., $S_{PS}(t,f,t,t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t,f,t,t)$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= P(x_1 \dots x_n)$$

That is, estimates derived from $\operatorname{PRIORSAMPLE}$ are consistent

Shorthand: $\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$

Chapter 14.4–5 22

Rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

 $\begin{aligned} & \textbf{function } & \textbf{REJECTION-SAMPLING}(X, \mathbf{e}, bn, N) \ \textbf{returns} \ \textbf{an estimate of} \ P(X|\mathbf{e}) \\ & \textbf{local variables:} \ \mathbf{N}, \ \textbf{a vector of counts over} \ X, \ \textbf{initially zero} \\ & \textbf{for} \ j = 1 \ \textbf{to} \ N \ \textbf{do} \\ & \mathbf{x} \leftarrow \text{PRIOR-SAMPLE}(bn) \\ & \textbf{if} \ \mathbf{x} \ \textbf{is consistent with} \ \mathbf{e} \ \textbf{then} \\ & \mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1 \ \textbf{where} \ x \ \textbf{is the value of} \ X \ \textbf{in} \ \mathbf{x} \\ & \textbf{return} \ \text{NORMALIZE}(\mathbf{N}[X]) \end{aligned}$

E.g., estimate $\mathbf{P}(Rain|Sprinkler=true)$ using 100 samples 27 samples have Sprinkler=true Of these, 8 have Rain=true and 19 have Rain=false.

 $\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$\begin{split} \hat{\mathbf{P}}(X|\mathbf{e}) &= \alpha \mathbf{N}_{PS}(X,\mathbf{e}) & \text{(algorithm defn.)} \\ &= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) & \text{(normalized by } N_{PS}(\mathbf{e}) \text{)} \\ &\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) & \text{(property of PRIORSAMPLE)} \end{split}$$

 $\approx P(X, \mathbf{e})/P(\mathbf{e})$ (property of PRIORSAMPLE $= P(X|\mathbf{e})$ (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

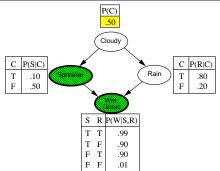
Chapter 14.4–5 23

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
\mathbf{function} \ \mathbf{\underline{Likelihood\text{-}Weighting}} \big( \textit{X}, \mathbf{e}, \textit{bn}, \textit{N} \big) \ \mathbf{returns} \ \mathsf{an} \ \mathsf{estimate} \ \mathsf{of} \ P(X|\mathbf{e})
    {f local\ variables}:\ {f W}, a vector of weighted counts over {\it X}, initially zero
    for j = 1 to N \operatorname{do}
            \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
           \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x}
    return Normalize(W[X])
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
    \mathbf{x} \leftarrow \text{an event with } n \text{ elements; } w \!\leftarrow\! 1
    for i = 1 to n do
           \mathbf{if} \ X_i has a value x_i in \mathbf{e}
                  then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
                  else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
    \mathbf{return}\ \mathbf{x},\ w
```

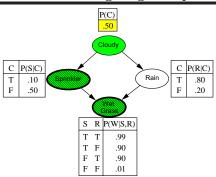
Likelihood weighting example



w = 1.0

Chapter 14.4–5 26

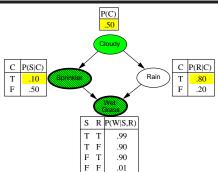
Likelihood weighting example



w = 1.0

Chapter 14.4-5 27

Likelihood weighting example

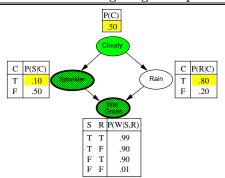


w = 1.0

Chapter 14.4-5 28

Chapter 14.4-5 30

Likelihood weighting example



 $w = 1.0 \times 0.1$

Likelihood weighting example P(C) C P(S|C) C P(R|C) .10 .50 S R P(W|S,R) ТТ .99 T F F T .90

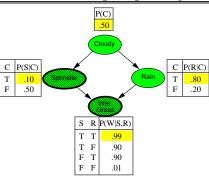
.90

.01

FF

 $w = 1.0 \times 0.1$

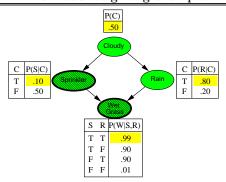
Likelihood weighting example



 $w = 1.0 \times 0.1$

Chapter 14.4-5 31

Likelihood weighting example



 $w = 1.0 \times 0.1 \times 0.99 = 0.099$

Chapter 14.4-5 32

Likelihood weighting analysis

Sampling probability for $\operatorname{WeightedSample}$ is

 $S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$

Note: pays attention to evidence in $\frac{\mathbf{ancestors}}{\mathbf{somewhere}}$ only

posterior distribution

Weight for a given sample \mathbf{z}, \mathbf{e} is $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|parents(E_i))$

Weighted sampling probability is

 $S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$

 $= \prod_{i=1}^{l} P(z_i|parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i|parents(E_i))$

 $= P(\mathbf{z}, \mathbf{e})$ (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Chapter 14.4–5 33

Approximate inference using MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

 ${f Z}$, the nonevidence variables in ${\it bn}$

 $\mathbf{x},$ the current state of the network, initially copied from \mathbf{e}

initialize ${\bf x}$ with random values for the variables in ${\bf Y}$ ${\bf for}\ j=1$ to $N\ {\bf do}$

for each Z_i in \mathbf{Z} do

sample the value of Z_i in ${\bf x}$ from ${\bf P}(Z_i|mb(Z_i))$ given the values of $MB(Z_i)$ in ${\bf x}$

given the values of $MB(Z_i)$ in \mathbf{X} $\mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1$ where x is the value of X in \mathbf{X}

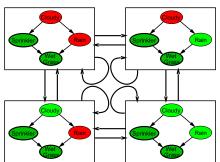
return Normalize(N[X])

Can also choose a variable to sample at random each time

Chapter 14.4–5 34

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:



Wander about for a while, average what you see

MCMC example contd.

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

E.g., visit 100 states

31 have Rain = true, 69 have Rain = false

$$\begin{split} \hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true) \\ = \text{NORMALIZE}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle \end{split}$$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Chapter 14.4-5 35

Markov blanket sampling

 $\label{eq:market} \begin{array}{c} \mbox{Markov blanket of } Cloudy \mbox{ is } \\ Sprinkler \mbox{ and } Rain \\ \mbox{Markov blanket of } Rain \mbox{ is } \\ Cloudy, Sprinkler, \mbox{ and } WetGrass \end{array}$

Probability given the Markov blanket is calculated as follows: $P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \Pi_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$

Easily implemented in message-passing parallel systems, brains

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large:

 $P(X_i|mb(X_i))$ won't change much (law of large numbers)

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- ${\sf -space} = {\sf time}, \ {\sf very} \ {\sf sensitive} \ {\sf to} \ {\sf topology}$

Approximate inference by LW, MCMC:

- $-\ LW$ does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to $1\ \mathrm{or}\ 0$
- Can handle arbitrary combinations of discrete and continuous variables

Chapter 14.4-5 37 Chapter 14.4-5 38