
1

Interpreters
Program executed immediately, rather than
translating to machine code that can be
executed later
Advantages:

Quicker move from code to execution
Easier to write an interpreter that runs on many
machines
Easier (often necessary) to have runtime checks

Disadvantage:
Resulting code is SLOW!

Some Interpreter Approaches
Single command parsed, executed

Examples: LISP, Scheme, Prolog
Single command parsed, executed (possibly
with optimization)

Example: most versions of SQL
File partially compiled, resulting code
interpreted

Example: Java
File parsed, result executed in interpreter
(possibly multiple times)

Examples: Perl, versions of awk

2

Single Command Interpreters
> (defun foo (x y)

(cond ((zerop x) 0)
(t (+ y (foo (- x 1) y)))))

FOO DEFINED
> (foo 4 3)

12

Much like execution of commands in a shell
Read next command
Execute command
Repeat

Single Command Interpreters
Generally scoping is much simpler

Generally a small number of scope layers
Example: foo declared globally, x and y are local
to foo
As a result, most meaningful data is held globally

Often these types of language allow you to
Save the current environment (including
everything declared up to now)
Execute a set of commands as a batch
In some cases, allow compilation of command files

3

Optimization in Single Command
Interpreters

SQL (Standard Query Language for DBs)
generally execute one command at a time

SELECT S.name, G.grade
FROM Student S, Class C, Grade G
WHERE (C.dept is “CS”) and (C.num = 5641) and

(C.cid = G.cid) and (S.sid = G.sid);
Resulting query produces an initial plan for
executing the query (an AST-like structure
representing the query)

result is then optimized to take advantage of
aspects of the DB (only need one cid from relation
Class, look that up first, then up corresponding
Grade entries, etc.)

Partial Compilation
In Java, code is partially compiled (into byte
code) that is low level, but not at machine
level (since Java tries to be machine/OS
independent)
Resulting code is then interpreted at run-time
(allowing the same byte code to be used
across multiple platforms)
Result is slow

One approach to speeding up – just in time
compilers

As translation from byte code to actual machine code
occurs keep track of translation and reuse when possible

4

Interpreting a Program File
Some interpreters follow many of the early
steps of a compiler (parsing/scanning,
semantic analysis) but then go straight to
execution rather than compiling
Disadvantage: have to “recompile” every time
Advantage: often can use the same
“program” on multiple platforms
Execution is generally done by interpreting
the AST resulting from the semantic analysis
step (as will be done in our project)

Key Issues in Executing a File
How to manage memory/variables?

One approach – use a variant of the list of
hashtables representation for a symbol table
(keep all hashtables making a tree)

How to execute each piece of code?
Surprisingly simple – often written in high level
language with many similar features (e.g.,
implement an IF using an if command(s))

Need to represent variables that result from
calculation/execution

How to deal with code that jumps out of a context
(return statements, break, exceptions, etc.)?

Harder to deal with, often have to pass around flags
used to control execution

5

A Scope Tree

Code:
int a;
float b;
char c (float a, int b) {

int c;
while (a < 100) {
char b = ‘A’;
a++;

}
int d;
print(d);

}
int d (int a) {

float b;
c(1.0,2);
d(3);

}

a: int, 1

b: float, 1

c: (float X int)→char, 1

d: (int)→int, 1

a: float, 2

b: int, 2

c: int, 2

d: int, 2

b: char, 3

a: int, 2

b: float, 2

Simple Solution – Memory
Management (No Recursion)

Associate with each entry in the symbol
table tree an appropriate amount of
memory connected to that variable
At scope entry (start of function or
block), reset memory to initial value (as
appropriate)
Works if there is no recursion

6

Memory Management with
Recursion

May be many versions of a local
variable/parameter during execution

Example:
int f1 (int v) {
if (v = 1) return 1;
else return v * f1(v – 1); }

One version of v for each recursive function call
But only the most recent v is ever active at one time

Idea: maintain memory locations associated with v
as a stack/linked list

Top of stack is the most recent/current value of v
At scope entrance, go through entire scope, push new
memory location for each variable
At scope exit, go through entire scope, pop the top of
stack for each variable

Representing Values
Need a mechanism for representing the result
of calculations

Option 1: Single class with field indicating type of
variable and corresponding memory for each
possible type

enum PossibleValues { vchar, vint, vfloat, vstring};
class Value {
PossibleValues vtype;
void *vloc;

};
Works well for simple types, but not for
complex/constructed types

7

Representing Values
Option 2: Single base type with multiple possible extension
types

class BaseValue {
};
class IntValue : public BaseValue {

int ival;
};

Better for complex types, may want to have isa() field:
class BaseValue {

virtual PossibleTypes isa() {}
};
class IntValue : public BaseValue {

int ival;
PossibleTypes isa() { return simple; }

};
But could simply track type during type checking (annotate
node with type(s)) and determine from that

Representing Values
Option 3: Simply pass void* to variable
location, use type checking to determine
context

Value type is known by operations applied/to
be applied to it
More on this next

8

Execution Steps
Depends partly on language
Example:

LISP – declarations, function definitions,
statement calls all mixed

Execution: get next item, execute

Executing a file that has been parsed depends on
language, for example (Pascal):

Create variables and deal with global scope (set any
initial global variables)
Execute “main” body statement (in C, C++ this would
correspond to finding and executing the main function)

Execution Functions
Generally execution done with (yet
another!) AST tree traversal
Usually implement two key functions
(most nodes use only one or the other
function)

ExprVal() – determine the value of an
expression
StmtExec() – execute a statement
(generally when the statement does NOT
produce a value)

9

Evaluating Expressions, Simple
void *IntLitNode::ExprVal() {

// ival of IntLitNode holds corresponding integer value
void *new_node = (void *) new int(ival);
return new_node;

}

void *IdentNode::ExprVal() {
void *new_node = allocate space for type of variable;
// copy current variable value to new space
return new_node;

}

Evaluating Expressions, Operator
BinaryNode: fields – op, left_arg,

right_arg
void *BinaryNode::ExprVal() {
void *left_val =

left_arg->ExprVal();
void *right_val =

right_arg->ExprVal();
if (op is +)
if (inputs are int) {
*((int *) left_val) =

*((int *) left_val) +
*((int *) right_val);

delete right_val;
return left_val;

}

if (inputs are float) {
*((float *) left_val) =

*((float *) left_val +
*((float *) right_val);

delete right_val;
return left_val;

}
// NOTE: assumes coercion
// done to guarantee all types
// to operator the same
// Etc.

10

Evaluating Statements
IfElseNode: fields – if_expression, if_stmt,

else_stmt (possibly null)

void IfElseNode::StmtExec() {
void *if_value = if_expression->ExprVal();
if (*((bool *) if_value))

if_stmt->StmtExec();
else

if (else_stmt) else_stmt->StmtExec();
}

Executing Functions
Allocate space for all variables in scope
Calculate values of each argument and copy
to corresponding variable
Execute the body of the function (list of
statements in the function)
At function end eliminate the variables in the
function scope (may need to copy values out
depending on parameter passing mechanism)
Complicating issue: return statements

11

Return Statements
Return statements not only determine
the resulting value of a function, but
generally cause the function to end at
that point
Even worse, the return may be buried
in several intervening scopes
Key aspects:

Value returned
Stopping execution

Return Values
Returns introduce complex issues for type
checking (need to find function definition
return is part of)
Simple idea: for each function definition have
a variable correspond to the return value of
that function (add to the scope for that
function)
At function entrance, push a new copy of that
variable as well
Return statements are connected to that
variable

12

Return Values
Implementation (type checking/interpreting):

At function definition, insert into function scope a
variable with a specific name not possible from
normal language (e.g., __return_val), associate
with variable return type of function
At return look up that name (__return_val) – find
one for most closely nesting function
Type of expression corresponding to return should
be the same as type for that variable
At function start set up variable (as with others in
that scope)
When return statement encountered, copy
variable into corresponding location

Halting Execution - Returns
Execution generally ends after a return is
encountered

Often buried within a further enclosing scope (or
two)

Idea: create a termination variable – pass the
variable (by reference) down through the
AST, setting it to true once a return is
reached

Down side: every AST type needs to check that
variable to determine if execution should continue

13

Further Complications
Some languages allow statements that cause
a context to end (break, continue)

Works somewhat like a return, but only within
context (what if both return and break possible?)

One idea, generally only one active function for return
and one active context to be broken (use two variables)

But what about goto’s and exceptions (a goto
may cross multiple scope boundaries, and an
exception may end several functions)

A lot depends on what is/is not possible in your
language

