iInterpreters

Program executed immediately, rather than
translating to machine code that can be
executed later

= Advantages:
= Quicker move from code to execution

= Easier to write an interpreter that runs on many
machines

« Easier (often necessary) to have runtime checks
= Disadvantage:
= Resulting code is SLOW!

Some Interpreter Approaches

= Single command parsed, executed
= Examples: LISP, Scheme, Prolog

= Single command parsed, executed (possibly
with optimization)
= Example: most versions of SQL

= File partially compiled, resulting code
interpreted
= Example: Java

= File parsed, result executed in interpreter
(possibly multiple times)
= Examples: Perl, versions of awk

s SiNgle Command Interpreters

> (defun foo (x y)
(cond ((zerop x) 0)
(t (+y (foo (- x 1) ¥)))))
FOO DEFINED
> (foo 4 3)
12

= Much like execution of commands in a shell
= Read next command
= Execute command
= Repeat

s Single Command Interpreters

= Generally scoping is much simpler
= Generally a small humber of scope layers

=« Example: foo declared globally, x and y are local
to foo

= As a result, most meaningful data is held globally

= Often these types of language allow you to

= Save the current environment (including
everything declared up to now)

» Execute a set of commands as a batch
= In some cases, allow compilation of command files

Optimization in Single Command
we LNtErpreters

= SQL (Standard Query Language for DBs)
generally execute one command at a time

SELECT S.name, G.grade

FROM Student S, Class C, Grade G

WHERE (C.dept is "CS") and (C.num = 5641) and

(C.cid = G.cid) and (S.sid = G.sid);

= Resulting query produces an initial plan for
executing the query (an AST-like structure
representing the query)

= result is then optimized to take advantage of
aspects of the DB (only need one cid from relation
Class, look that up first, then up corresponding
Grade entries, etc.)

« Partial Compilation

= In Java, code is partially compiled (into byte
code) that is low level, but not at machine
level (since Java tries to be machine/0OS
independent)

= Resulting code is then interpreted at run-time
(allowing the same byte code to be used
across multiple platforms)

= Result is slow

= One approach to speeding up — just in time
compilers

= As translation from byte code to actual machine code
occurs keep track of translation and reuse when possible

*Interpreting a Program File

= Some interpreters follow many of the early
steps of a compiler (parsing/scanning,
semantic analysis) but then go straight to
execution rather than compiling

= Disadvantage: have to “recompile” every time

= Advantage: often can use the same
“program” on multiple platforms

= Execution is generally done by interpreting
the AST resulting from the semantic analysis
step (as will be done in our project)

== Key Issues in Executing a File

= How to manage memory/variables?

= One approach — use a variant of the list of
hashtables representation for a symbol table
(keep all hashtables making a tree)

= How to execute each piece of code?

= Surprisingly simple — often written in high level
language with many similar features (e.g.,
implement an IF using an if command(s))
= Need to represent variables that result from
calculation/execution
= How to deal with code that jumps out of a context
(return statements, break, exceptions, etc.)?

= Harder to deal with, often have to pass around flags
used to control execution

&FA Scope Tree

Code:
int a;
float b;
char ¢ (float a, int b) {
iﬁFlcr‘(< 100) a: float, 2
while (a o -
char b = ‘A’ ; a:int, 1 b: int, 2
++; : ;
) a b: float, 1 c:int, 2
int d; c: (float X int)—char, 1 d: int, 2
: print(d); d: (int)int, 1
a:int, 2
int d (int a) {
float b; b: float, 2
c(1.0,2);
d(3);

}

Simple Solution — Memory
$ Management (No Recursion)

= Associate with each entry in the symbol
table tree an appropriate amount of
memory connected to that variable

= At scope entry (start of function or
block), reset memory to initial value (as
appropriate)

= Works if there is no recursion

Memory Management with
Recursion

= May be many versions of a local
variable/parameter during execution
=« Example:

int f1 (int v) {
if (v=1)return 1;
else return v * fi(v—-1); }

= One version of v for each recursive function call
= But only the most recent v is ever active at one time
= Idea: maintain memory locations associated with v
as a stack/linked list
= Top of stack is the most recent/current value of v

= At scope entrance, go through entire scope, push new
memory location for each variable

= At scope exit, go through entire scope, pop the top of
stack for each variable

Representing Values

= Need a mechanism for representing the result
of calculations

= Option 1: Single class with field indicating type of
variable and corresponding memory for each
possible type
enum PossibleValues { vchar, vint, vfloat, vstring};
class Value {
PossibleValues vtype;
void *vloc;
¥
=« Works well for simple types, but not for
complex/constructed types

Representing Values

= Option 2: Single base type with multiple possible extension
types
class BaseValue {
o
class IntValue : public BaseValue {
int ival;
o
= Better for complex types, may want to have isa() field:
class BaseValue {
virtual PossibleTypes isa() {}
o
class IntValue : public BaseValue {
int ival;
PossibleTypes isa() { return simple; }
o

= But could simply track type during type checking (annotate
node with type(s)) and determine from that

Representing Values

= Option 3: Simply pass void* to variable
location, use type checking to determine
context

= Value type is known by operations applied/to
be applied to it

= More on this next

= Execution Steps

= Depends partly on language
= Example:

= LISP — declarations, function definitions,
statement calls all mixed

= Execution: get next item, execute
» Executing a file that has been parsed depends on
language, for example (Pascal):

=« Create variables and deal with global scope (set any
initial global variables)

= Execute “main” body statement (in C, C++ this would
correspond to finding and executing the main function)

i‘ Execution Functions

= Generally execution done with (yet
another!) AST tree traversal

= Usually implement two key functions

(most nodes use only one or the other
function)

= ExprVal() — determine the value of an
expression

= StmtExec() — execute a statement

(generally when the statement does NOT
produce a value)

« EValuating Expressions, Simple

void *IntLitNode::ExprVal() {
// ival of IntLitNode holds corresponding integer value
void *new_node = (void *) new int(ival);
return new_node;

}

void *IdentNode::ExprVal() {
void *new_node = allocate space for type of variable,
// copy current variable value to new space
return new_node;

¥

$ Evaluating Expressions, Operator

BinaryNode: fields — op, left_arg, if (inputs are float) {

right_arg *((float *) left_val) =
void *BinaryNode::ExprVal() { *((float *) left_val +
void *left_val = o
left_arg->ExprVal(); *((float ¥) right_val);
void *right_val = delete right_val;
right_arg->ExprVal(); return left_val;
if (op is +)
if (/nputs are int) { // NOTE: assumes coercion
*((int *) left_val) = // done to guarantee all types
*((int *) left_val) + /| to operator the same
*((int *) right_val); /] Etc.

delete right_val;
return left_val;

}

= EValuating Statements

IfElseNode: fields — if_expression, if_stmt,
else_stmt (possibly null)

void IfElseNode::StmtExec() {
void *if_value = if_expression->ExprVal();
if (*((bool *) if_value))
if_stmt->StmtExec();
else
if (else_stmt) else_stmt->StmtExec();

}

$ Executing Functions

= Allocate space for all variables in scope

= Calculate values of each argument and copy
to corresponding variable

= Execute the body of the function (list of
statements in the function)

= At function end eliminate the variables in the
function scope (may need to copy values out
depending on parameter passing mechanism)

= Complicating issue: return statements

= Return Statements

Return statements not only determine

the resulting value of a function, but
generally cause the function to end at
that point

Even worse, the return may be buried
in several intervening scopes

Key aspects:

= Value returned

= Stopping execution

* Return Values

Returns introduce complex issues for type
checking (need to find function definition
return is part of)

Simple idea: for each function definition have
a variable correspond to the return value of
that function (add to the scope for that
function)

At function entrance, push a new copy of that
variable as well

Return statements are connected to that
variable

= Return Values

= Implementation (type checking/interpreting):

= At function definition, insert into function scope a
variable with a specific name not possible from
normal language (e.g., __ return_val), associate
with variable return type of function

= At return look up that name (__return_val) — find
one for most closely nesting function

= Type of expression corresponding to return should
be the same as type for that variable

= At function start set up variable (as with others in
that scope)

= When return statement encountered, copy
variable into corresponding location

i‘ Halting Execution - Returns

= Execution generally ends after a return is
encountered
= Often buried within a further enclosing scope (or

two)

= Idea: create a termination variable — pass the
variable (by reference) down through the
AST, setting it to true once a return is
reached

= Down side: every AST type needs to check that
variable to determine if execution should continue

we FUrther Complications

= Some languages allow statements that cause
a context to end (break, continue)

= Works somewhat like a return, but only within
context (what if both return and break possible?)

= One idea, generally only one active function for return
and one active context to be broken (use two variables)

= But what about goto’s and exceptions (a goto
may cross multiple scope boundaries, and an
exception may end several functions)

= A lot depends on what is/is not possible in your
language

