« COde Generation I

= Stack machines
= The MIPS assembly language
= A simple source language

= Stack-machine implementation of the
simple language
= Readings: 9.1-9.7

§“ Stack Machines

A simple evaluation model

No variables or registers

A stack of values for intermediate results
Each instruction:

= Takes its operands from the top of the stack
= Removes those operands from the stack

= Computes the required operation on them
= Pushes the result on the stack




Example of Stack Machine
w Operation

= The addition operation on a stack machine

N
5%7"@\12

~

pop add  push

Example of a Stack Machine
$« Program

s Consider two instructions

= pushi - place the integer i on top of the stack
= add - pop two elements, add them and put
the result back on the stack

= A program to compute 7 + 5:
push 7
push 5
add




#Why Use a Stack Machine ?

= Each operation takes operands from the
same place and puts results in the same
place

= This means a uniform compilation
scheme

= And therefore a simpler compiler

§« Why Use a Stack Machine ?

= Location of the operands is implicit

= Always on the top of the stack

No need to specify operands explicitly

No need to specify the location of the result
Instruction “add” as opposed to “add ry, r,"

= Smaller encoding of instructions
= More compact programs

This is one reason why Java Bytecodes use a
stack evaluation model




#Optimizing the Stack Machine

= The add instruction does 3 memory
operations
= Two reads and one write to the stack
= The top of the stack is frequently accessed
= Idea: keep the top of the stack in a register
(called accumulator)
= Register accesses are faster
= The “add” instruction is now
acc «— acc + top_of_stack
= Only one memory operation!

& Stack Machine with Accumulator

Invariants

= The result of computing an expression
is always in the accumulator

= For an operation op(e,,...,e,) push the
accumulator on the stack after
computing each of e,...,e, ;
= After the operation pop n-1 values

= After computing an expression the stack
is as before




Stack Machine with Accumulator.
w: EXample

= Compute 7 + 5 using an accumulator

acc 7 5 -—>@/v 12

annad

stack

acc <7  acc < 5 acc <« acc + top_of_stack
push acc pop

$W A Bigger Example: 3 + (7 + 5)

Code Acc Stack
acc < 3 3 <init>
push acc 3 3, <init>
acc <« 7 7 3, <init>
push acc 7 7,3, <init>
acc« 5 5 7, 3, <init>
acc « acc + top_of_stack 12 7,3, <init>
pop 12 3, <init>
acc <« acc + top_of_stack 15 3, <init>

pop 15 <init>




s NOLES

= It is very important that the stack is

preserved across the evaluation of a

subexpression

= Stack before the evaluation of 7 + 5 is
3, <init>

= Stack after the evaluation of 7 + 5 is
3, <init>

= The first operand is on top of the stack

§ From Stack Machines to MIPS

= The compiler generates code for a stack
machine with accumulator

= We want to run the resulting code on
the MIPS processor (or simulator)

= We simulate stack machine instructions
using MIPS instructions and registers




= OiMulating a Stack Machine...

= The accumulator is kept in MIPS register $a0
= The stack is kept in memory
= The stack grows towards lower addresses

» Standard convention on the MIPS architecture

= The address of the next location on the stack
is kept in MIPS register $sp
= The top of the stack is at address $sp + 4

s MIPS Assembly

MIPS architecture

= Prototypical Reduced Instruction Set
Computer (RISC) architecture

= Arithmetic operations use registers for
operands and results

= Must use load and store instructions to use
operands and results in memory

= 32 general purpose registers (32 bits each)

=« We will use $sp, $a0 and $t1 (a temporary
register)




#A Sample of MIPS Instructions

= |lw reg, offset(reg,)

= Load 32-bit word from address reg, + offset into reg,
add reg, reg, regs;

= reg; < reg, + reg;
sw reg, offset(reg,)

= Store 32-bit word in reg, at address reg, + offset
addiu reg, reg, imm

» reg; < reg, +imm

= "U” means overflow is not checked
li reg imm

» reg < imm

g MIPS Assembly. Example.

= The stack-machine code for 7 + 5 in MIPS:

acc « 7 li $a0 7

push acc sw $a0 0($sp)
addiu $sp $sp -4

acc < 5 li $a0 5

acc « acc + top_of_stack lw $11 4($sp)
add $a0 $a0 $+t1

pop addiu $sp $sp 4

+ We now generalize this to a simple language...




#A Small Language

= A language with integers and integer
operations

P—>D;P|D

D — def id(ARGS) = E;

ARGS — id, ARGS | id

E— int]id|if E; = E, then E; else E,
| E; + E, | E; — E, | id(E4,...,E,)

g A Small Language (Cont.)

= The first function definition f is the “main”
routine

= Running the program on input i means
computing f(i)

= Program for computing the Fibonacci
numbers:

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else
fib(x - 1) + fib(x — 2)




#Code Generation Strategy

= For each expression e we generate
MIPS code that:
= Computes the value of e in $a0

= Preserves $sp and the contents of the
stack

= We define a code generation function
cgen(e) whose result is the code
generated for e

<L _Code Generation for Constants

= The code to evaluate a constant simply
copies it into the accumulator:

cgen(i) = li $a0 i

= Note that this also preserves the stack,
as required




ﬁiﬂ Code Generation for Add

cgen(e; + e,) =
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4

= Possible optimization: Put the result of e,
directly in register $t1 ?

Code Generation for Add. Wrong!

= Optimization: Put the result of e, directly in
$t1?

cgen(e; + e,) =
cgen(e,)
move $t1 $a0
cgen(e,)
add $a0 $t1 $a0

= Try to generate code for: 3 + (7 + 5)




= COde Generation Notes

= The code for + is a template with
“holes” for code for evaluating e, and e,

= Stack machine code generation is
recursive

= Code for e, + e, consists of code for e,
and e, glued together

= Code generation can be written as a
recursive-descent of the AST

= At least for expressions

Code Generation for Sub and

§ Constants

= New instruction: sub reg, reg, regs;
= Implements reg, « reg, - regs
cgen(e; - &) =
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4




= COde Generation for Conditional

= We need flow control instructions

= New instruction: beq reg, reg, label
= Branch to label if reg; = reg,

= New instruction: b label
= Unconditional jump to label

g Code Generation for If (Cont.)

cgen(if e; = e, then e else e;) =

cgen(e,)

sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)

lw $t1 4($sp)
addiu $sp $sp 4

beqg $a0 $t1 true_branch

false_branch:
cgen(e,)
b end_if
true_branch:
cgen(es)
end_if:




w1 NE€ Activation Record

s Code for function calls and function
definitions depends on the layout of the
activation record

= A very simple AR suffices for this language:
= The result is always in the accumulator
= No need to store the result in the AR
= The activation record holds actual parameters

= For f(xy,...,x,) push x,,...,x, on the stack
« These are the only variables in this language

§ The Activation Record (Cont.)

= The stack discipline guarantees that on
function exit $sp is the same as it was on
function entry
= No need for a control link

= We need the return address

= It's handy to have a pointer to the current
activation
= This pointer lives in register $fp (frame pointer)
= Reason for frame pointer will be clear shortly




w1 NE€ Activation Record

= Summary: For this language, an AR with the
caller’s frame pointer, the actual parameters,
and the return address suffices

= Picture: Consider a call to f(x,y), The AR will
be: Ep

old fp

y AR of f
X

SP

-« Code Generation for Function Call

= The calling sequence is the instructions
(of both caller and callee) to set up a
function invocation

= New instruction: jal label

= Jump to label, save address of next
instruction in $ra

= On other architectures the return address
is stored on the stack by the “call”
instruction




Code Generation for Function Call

ae (Cont.)

Cgen(f(ell---/en)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(e,)
sw $a0 0($sp)
addiu $sp $sp -4

cgen(e;)

sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

« The caller saves its value

of the frame pointer

« Then it saves the actual

parameters in reverse
order

« The caller saves the

return address in
register $ra

+ The AR so far is 4*n+4

bytes long

Code Generation for Function

-« Definition

= New instruction: jr reg
= Jump to address in register reg

cgen(def f(xy,...x,)=¢e)=
move $fp $sp
sw $ra O($sp)
addiu $sp $sp -4
cgen(e)
lw $ra 4($sp)
addiu $sp $sp z
lw $fp O($sp)
jr $ra

* Note: The frame pointer
Eoin’rs to the top, not
ottom of the frame

* The callee pops the return
address, the actual
ar?umen‘rs and the saved
value of the frame pointer

- z=4*n+8




Calling Sequence. Example for
o f04Y).

Before call On entry Before exit After call
FP FP FP
SP old fp oldfp | SP
Y Y
X X
SP FP| return
SP

« Code Generation for Variables

= Variable references are the last construct
= The “variables” of a function are just its
parameters
= They are all in the AR
= Pushed by the caller

= Problem: Because the stack grows when
intermediate results are saved, the variables
are not at a fixed offset from $sp




Code Generation for Variables
#(Cont.)

= Solution: use a frame pointer
= Always points to the return address on the stack
= Since it does not move it can be used to find the
variables
= Let x; be the it (i = 1,...,n) formal parameter
of the function for which code is being
generated

cgen(x) = Iw $a0 z($fp)  (z = 4*i )

Code Generation for Variables
* (Cont.)

= Example: For a function def f(x,y) = e
the activation and frame pointer are set

up as follows:
old fp

y « Xisat fp +4

X - Yisatfp+8
FP| return

SP




Summary

= The activation record must be designed
together with the code generator

= Code generation can be done by recursive
traversal of the AST

= Production compilers do different things

=« Emphasis is on keeping values (esp. current stack
frame) in registers

= Intermediate results are laid out in the AR, not
pushed and popped from the stack

= Next time: code generation for objects




