= COde Generation II

= Code generation for OO languages
= Object layout
= Dynamic dispatch

= Parameter-passing mechanisms

= Allocating temporaries in the AR

§N Object Layout

= OO implementation = Stuff from last lecture
+ More stuff

= OO Slogan: If B is a subclass of A, than an
object of class B can be used wherever an
object of class A is expected

= This means that code in class A works
unmodified for an object of class B




#Two Issues

= How are objects represented in
memory?

= How is dynamic dispatch implemented?

&M Object Layout Example

class A { class C extends A {
inta =0; intc=3;
@ntd=1; inth){a=a*g
intfQ0{a=a+d; return a; }
return a; } .

§ };

class B extends A {
intb = 2;
int f() { return a; }
intg){a=a-b;
return a; }

b




#Object Layout (Cont.)

= Fields a and d are inherited by classes B
and C

= All methods in all classes refer to a

= For A methods to work correctly in A, B,
and C objects, field a must be in the
same “place” in each object

§ Object Layout (Cont.)

An object is like a struct in C. The reference
foo.field

is an index into a foo struct at an offset
corresponding to field

Objects in Java/C++ are implemented similarly
= Objects are laid out in contiguous memory
» Each field is stored at a fixed offset in object




#A Sample Object Layout

= The first 3 words of an object contain

header information:

Class Tag

Object Size

Dispatch Ptr

Field 1

Field 2

Offset

1z
16

$M Sample Object Layout (Cont.)

Class tag is an integer

= Identifies class of the object

methods
= More later

Object size is an integer
= Size of the object in words

Dispatch ptr is a pointer to a table of

Fields in subsequent slots

Layout in contiguous memory




aw: SUDCIASSES

Observation: Given a layout for class A,
a layout for subclass B can be defined
by extending the layout of A with
additional slots for the additional field of
B

Leaves the layout of A unchanged
(B is an extension of A)

$M Layout Picture

Offset |0 4 |8 12 |16 |20
Class

A Atag |5 [|* a d

B Btag |6 |* a d b

C Ctag |6 |* a d C




wa: SUbclasses (Cont.)

= The offset for a field is the same in a class
and all of its subclasses
= Any method for an A, can be used on a subclass
A2
= Consider layout for A, < ... < A; <A, < A

Header A, object What about

A, attrs. A, object /ﬁU/f/R/e

A inheritance?
2 affrs Aj object

A; attrs

g Object Layout Example (Repeat)

class A { class C extends A {
inta =0; intc=3;
@ntd=1; inth){a=a*g
intfQ0{a=a+d; return a; }
return a; } .

§ };

class B extends A {
intb = 2;
int f() { return a; }
intg){a=a-b;
return a; }

b




#Dynamic Dispatch Example

[ eg()
= g refers to method inBifeisaB
[ ef()

« f refers to method in Aif fisan Aor C
(inherited in the case of C)

= f refers to method in B for a B object

= The implementation of methods and dynamic
dispatch strongly resembles the
implementation of fields

§« Dispatch Tables

= Every class has a fixed set of methods
(including inherited methods)

» A dispatch table indexes these methods

= dispatch table = an array of method entry
points

= A method f lives at a fixed offset in the

dispatch table for a class and all of its
subclasses




#Dispatch Table Example

= The dispatch table for

Offset |0 4 class A has only 1
Class method
= The tables for B and C
A fA
extend the table for A
to the right
B fB |g = Because methods can

be overridden, the
method for f is not the
same in every class, but
is always at the same
offset

C fA |h

* Using Dispatch Tables

= The dispatch pointer in an object of
class X points to the dispatch table for
class X

= Every method f of class X is assigned an
offset Os in the dispatch table at
compile time




Using Dispatch Tables (Cont.)

= To implement a dynamic dispatch e.f()
we
= Evaluate e. The result is a pointer to an
object x

= Call D[O/]
=« D is the dispatch table for x
« In the call, this is bound to x

== Parameter Passing Mechanisms

= There are many semantic issues in
programming languages centering on when
values are computed and the scope of names
= we've already seen static vs. dynamic scoping

= Now we'll focus on parameter passing
= When are arguments of function calls evaluated?

= To what objects are the formal parameters
bound?




#Call-By-Value

= TO evaluate f(e)
= Evaluate e to a value v

= Bind v to the formal parameter in the
function body

= Example
voidgxX){x=x+1; }
void f(y) { g(y); print(y); }
= Under call-by-value, f(0) prints 0.

${ The Stack Under Call-By-Value

yl O
f(y) /

> Y
g(y) «
X=X+1

print(y) \ y O
\ X 1

y| O

o




Call-By-Value Discussion

= Under call-by-value, g(y) does not affect the
value of y

= Y's value, not y itself, is passed to g

= The formal parameter is stored in a different
location from the actual parameter

= Call-by-value is widely used
= C, C++, Java are prominent examples

Call-By-Reference

= To evaluate f(e)
= e is evaluated
= A pointer to e is passed as the argument

» f's code accesses the argument through the
pointer

» If e is already a stored value (i.e., a variable)
a pointer to that location is used

= Otherwise, e is evaluated and stored in a
fresh, temporary location first




The Stack Under Call-By-
w REfErEence

y
f(y) /

A 4
(@

g(y) > 1 e

X=X+1
Drint(y)\A\‘y Va 1

~
v
—_—

== Call-By-Reference Discussion

= Under Call-By-Reference, only the address is
passed
= References to the value dereference the pointer

= In the example, because x and y refer to the
same value, changes to x also change y

= Many languages pass large data structures
(e.g., arrays) by reference




w REVIEW

= The stack machine has activation records and
intermediate results interleaved on the stack

AR
Temporaries
AR
Temporaries

- Review (Cont.)

= Advantage: Very simple code
generation

= Disadvantage: Very slow code

= Storing/loading temporaries requires a
store/load and $sp adjustment




#A Better Way

= Idea: Keep temporaries in the AR

= The code generator must assign a
location in the AR for each temporary

$« Example

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else
fib(x - 1) + fib(x — 2)

= What intermediate values are placed on
the stack?

= How many slots are needed in the AR
to hold these values?




#How Many Temporaries?

m Let NT(e) = # of temps needed to evaluate e

u NT(el + ez)
= Needs at least as many temporaries as NT(e,)
= Needs at least as many temporaries as NT(e,) + 1

= Space used for temporaries in e, can be reused for
temporaries in e,

§ The Equations

NT(e, + e,) = max(NT(e,), 1 + NT(e,))
NT(e, - e;,) = max(NT(e;), 1 + NT(e,))

NT(if e; = e, then e; else e;) = max(NT(e;),1 + NT(e,),
NT(e;3), NT(e,))
NT(id(ey,...,€,) = max(NT(e,),...,NT(e,))
NT(int) =0
NT(id) = 0

Is this bottom-up or top-down?
What is NT(...code for fib...)?




#The Revised AR

= For a function definition f(x,,...,x,) = e
the AR has 2 + n + NT(e) elements
= Return address
= Frame pointer
= N arguments
= NT(e) locations for intermediate results

Return Addr.
Temp NT(e)

Temp 1




o ReVised Code Generation

= Code generation must know how many
temporaries are in use at each point

= Add a new argument to code
generation: the position of the next
available temporary

-« Code Generation for + (original)

cgen(e; + e,) =

cgen(e,)

sw $a0 0($sp)
addiu $sp $sp -4
cgen(e,)

lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4




= COde Generation for + (revised)

cgen(e; + e, nt) =
cgen(ey, nt)
sw $a0 nt($fp)
cgen(e,, nt + 4)
lw $t1 nt($fp)
add $a0 $t1 $a0

= Notes

= The temporary area is used like a small,
fixed-size stack

= Exercise: Write out cgen for other
constructs




