!" CS 5641 Compiler Design

Rich Maclin
rmaclin@d.umn.edu
319 Heller Hall

<« Acknowledgements

= Notes derived from:
= Susan Horwitz (UW-Madison)
= Ras Bodik (UW-Madison)
= Alex Aiken (Berkeley)
= George Necula (Berkeley)

&FReadings

= Chapter 1

= Chapter 2 (optional) — may want to
review this chapter periodically

Levels of Programming
* Languages

= Machine language
= Assembly language
= High-level languages
= C, C++, LISP, Pascal, Prolog, Scheme

= Natural language
= English

*Programming Paradigms

= Imperative languages
= Computation as a series of actions
= Object-oriented programming

= Computation organized around objects and
functions that can be applied to objects

= Functional programming
= Language as a set of (extendable) functions
= Logic programming

= Programs as defining what a solution look like,
letting the machine find a solution

i‘ Tools for Programming

= Interpreter

»« Commands in a high level language are
translated to machine terms as they are
encountered

= Compiler

= Program translated in its entirety at one
time to a corresponding machine language
program

= Hybrids

iParts of a Compiler

Source Code — Parser —

Semantic|_,| Intermediate
Analyzer | |Code Generator

|

Scanner

)

Optimizer

)

Code Generator

}

Object Code

* Scanner

Translates an input sequence of characters into a
sequence of tokens

Tokens in English: word (junk), capitalized word
(Program), period (.)

Sample input: Dogs like chocolate.

= Tokens: capitalized word (Dogs)

word (like)
word (chocolate)
period

Scanners can note illegal characters
Some scanners also do limit checks on integers

« Program Tokens

= Sample input:

int main () {
inta=0;
cout << a << endl;
return 1;

b

= Tokens:
Identifier (int)
Identifier (main)
Left parenthesis
Right parenthesis
Left curly brace
Identifier (int)

Equals

Integer (0)

Semi-colon

Identifier (cout)

Double left angle bracket
Identifier (a)

Double left angle bracket
Identifier (endl)
Semi-colon

Reserved word (return)
Integer (1)

Semi-colon

Right curly brace

* Parser

= Groups tokens together to form

grammatical phrases

= Builds a structure to capture the program

(abstract syntax tree)

« Interior nodes — operators

« Children - operands
« Example: a =a * 5;

/=*
/™

a 5

d

iParser Errors

= Parsers generally understand programs
as a series of statements (think
sentences)

= Errors generated when it cannot
understand your sentence

= Example: a = * 5;

Something missing!

* Semantic Analyzer

= Checks for non-syntactic errors
= Example: type errors
= May change or annotate the abstract syntax tree

= For example, many arithmetic operators apply only to
operands of one type, if two compatible types are mixed
semantic analyzer may convert

« Example: a = 3.0 *5; —
RN .
PN /N

* 3.0 int_to_double
RN N

3.0 5 5

d

d

«= LNtermediate Code Generator

= Translates from syntax tree to some
intermediate code
= One possibility — 3-address code,
statements with at most 3 operands
« Example: a = initial + rate * 60;
= Translation:
Templ = int_to_double(60)
Temp2 = rate * Templ
Temp3 = initial + Temp2
a = Temp3

* Optimizer

= Improves code generated by intermediate
code generator
= Usually for speed, sometimes for size

= Example (from previous)
= Initial
Templ = int_to_double(60)
Temp2 = rate * Templ
Temp3 = initial + Temp2
a = Temp3

Convert at compile time
« Improved \/
Temp?2 = rate * 60.0

a = initial + Temp2 — NO need to store, copy Temp3

- Code Generator

= Generates the object code

= Intermediate instructions are translated into a
sequence of target code instructions

= Example:
LOADF rate, R1
MULF #60.0, R1
LOADF initial, R2
ADDF R2, R1

STOREF R1, a

