Syntax-Directed Translation

= Extending CFGs

= Grammar Annotation

= Parse Trees

= Abstract Syntax Trees (ASTs)

= Readings: Section 5.1, 5.2, 5.5, 5.6

$N Motivation: parser as a translator

syntax-directed

stream of ASTs, or
—_—
tokens parser assembly code

!

syntax + translation rules
(typically hardcoded in the parser)

Mechanism of syntax-directed
= Cranslation

= syntax-directed translation is done by
extending the CFG

= a translation rule is defined for each production

given
X>dABc
the translation of X is defined in terms of
= translation of nonterminals A, B
=« values of attributes of terminals d, c
= constants

* To translate an input string:

1. Build the parse tree.

2. Working bottom-up

Use the translation rules to compute the translation of
each nonterminal in the tree

Result: the translation of the string is the translation of
the parse tree's root nonterminal

Why bottom up?

= a nonterminal's value may depend on the value of
the symbols on the right-hand side,

= SO translate a non-terminal node only after children
translations are available

s EXample 1: arith expr to its value

Syntax-directed translation:
the CFG translation rules

E>E+T E,.trans = E,.trans + T.trans
E->T E.trans = T.trans

T>T*F T,.trans = T,.trans * F.trans
T>F T.trans = F.trans

F - int F.trans = int.value

F>(E) F.trans = E.trans

Example 1 (cont)

E (18)
Input: 2 * (4 +5) |
T (18)
T (2) * F (9)
' I
F (2
¢(! (EO))
int (2)
E@ + T
Annotated Parse Tree T (4) F (5)
v v

F (4) int (5)
int'(4)

ample 2: Compute type of expr

E->E+E if ((E,.trans == INT) and (E,.trans == INT)
then E,.trans = INT
else E,.trans = ERROR

E->EandE if ((E,trans == BOOL) and (E,.trans == BOOL)
then E,.trans = BOOL

else E,.trans = ERROR

E->E-== if ((E,.trans == E,.trans) and (E,.trans |= ERROR))
then E,.trans = BOOL
else E,.trans = ERROR

E -> true E.trans = BOOL

E -> false E.trans = BOOL

E ->int E.trans = INT
E->(E) E,.trans = E,.trans

* Example 2 (cont)

= Input: (2 +2) ==
1. parse tree:

». annotation:

we Another Example

= A CFG for the language of binary numbers:
B->0
2> 1
>BO0
>B1
= Define a syntax-directed translation so that

the translation of a binary number is its base-
10 value

= Draw the parse tree for 1001 and annotate
each nonterminal with its translation

g Building Abstract Syntax Trees

= Examples so far, streams of tokens
translated into

= integer values, or
= types

= Translating into ASTs is not very
different

&FAST vs Parse Tree

= AST is condensed form of a parse tree
= operators appear at /nternal/ nodes, not at leaves
= "Chains" of single productions are collapsed
= Lists are "flattened"
= Syntactic details are ommitted
= €.g., parentheses, commas, semi-colons
= AST is better structure for later compiler
stages
= omits details having to do with the source
language

= only contains information about the essential
structure of the program

$ Ex: 2*(4+5) parse tree vs AST
E

i
: .
— T N

*

<« T «—

F
I
=) 4 5
int (2) A/l\A

*

<« T] «— «[T]
<« T] «—

int (5)
int (4)

#Definitions of AST nodes

class ExpNode { }

class IntLitNode extends ExpNode {
public IntLitNode(int wval) {...}

}

class PlusNode extends ExpNode {
public PlusNode(ExpNode el, ExpNode e2) {
cee)
}

class TimesNode extends ExpNode {
public TimesNode (ExpNode el, ExpNode e2) {
cee)

* AST-building translation rules

E,2>E,+T E,trans=

new PlusNode(E,.trans, T.trans)
E->T E.trans = T.trans
T,>T,*F T,trans =

new TimesNode(T,.trans, F.trans)
T>F T.trans = F.trans
F - int F.trans = new IntLitNode(int.value)

F>(E) F.trans = E.trans

*Example

= [llustrate the syntax-directed translation
defined previously by

= drawing the parse tree for 2 + 3 * 4, and

= annotating the parse tree with its
translation

= i.e., each nonterminal X in the parse tree will

have a pointer to the root of the AST subtree
that is the translation of X

Syntax-Directed Translation and
* LL Parsing

= not obvious how to do this, since

= predictive parser builds the parse tree top-down,
= syntax-directed translation is computed bottom-
up.
= could build the parse tree (inefficient!)

= Instead, add a semantic stack:
= holds nonterminals' translations

= when the parse is finished, the semantic stack will
hold just one value:

» the translation of the root nonterminal
(which is the translation of the whole input).

= HOW does semantic stack work?

= How to push/pop onto/off the semantic stack?
= add actions to the grammar rules

= The action for one rule must:
= Pop the translations of all rhs nonterminals
= Compute and push the translation of the Ihs nonterminal

= Actions are represented by action humbers
= action numbers become part of rhs of grammar rules
= action numbers pushed onto the (normal) stack along with
the terminal and nonterminal symbols
= when an action number is the top-of-stack symbol,
it is popped and the action is carried out

&N Keep in mind

= action for X > Y, Y, ... Y, is pushed onto
the (normal) stack when the derivation
step
X=2> Y, Y,..Y, is made, but

= the action is performed only after complete
derivations for all of the Y's have been
carried out

= Example: Counting Parentheses

E, ¢ E,.trans =0
2 (E,)) E,.trans = E,.trans + 1
2> [E,] E,.trans = E,.trans

g}{ Example: Step 1

= replace the translation rules with translation
actions

= Each action must:

= Pop rhs nonterminals' translations from semantic stack
=« Compute and push the Ihs nonterminal's translation

= Here are the translation actions:

E->¢ push(0);
2> (E) exp2Trans = pop();
push(exp2Trans + 1);
2>[E] exp2Trans = pop();

push(exp2Trans),

s Example: Step 2

each action is represented by a unique action
number,

= the action numbers become part of the grammar
rules:

E =2 ¢ #1
2> (E) #2
2> [E] #3

#1: push(0);
#2: exp2Trans = pop(); push(exp2Trans + 1);
#3: exp2Trans = pop(); push(exp2Trans);

${ Example: example

input so far stack semantic stack action

(E EOF pop, push "(E) #2"
((E) #2 EOF pop, scan

(a E) #2 EOF pop, push "[E "

([E]) #2 EOF pop, scan

1 E]) #2 EOF pop, push g #1

(N #1])#2 EOF pop, do action

N 1) #2 EOF 0 pop, scan

(D) #2 EOF 0 pop, scan

([D EOF #2 EOF 0 pop, do action

([D EOF EOF 1 pop, scan

([D EOF empty stack: input accepted!

translation of input = 1

What if the rhs has >1
we NONterminal?

= pop multiple values from the semantic stack:

= CFG Rule:
methodBody - { varDecls stmts }
= Translation Rule:
methodBody.trans = varDecls.trans + stmts.trans
= Translation Action:
stmtsTrans = pop(); declsTrans = pop();
push(stmtsTrans + declsTrans);
= CFG rule with Action:
methodBody - { varDecls stmts } #1
#1: stmtsTrans = pop(); declsTrans = pop();
push(stmtsTrans + declsTrans);

s | €'Minals

= Simplification:
= we assumed that each rhs contains at most one
terminal
= How to push the value of a terminal?
= a terminal’s value is available only when
the terminal is the "current token"

= put action before the terminal

= CFG Rule: F - int
= Translation Rule: F.trans = int.value
= Translation Action: push(int.value)

= CFG rule with Action:
F - #1 int // action BEFORE terminal
#1: push(currToken.value)

s Handling non-LL(1) grammars

= Recall that to do LL(1) parsing

= nhon-LL(1) grammars must be transformed
= €.g., left-recursion elimination
= the resulting grammar does not reflect the
underlying structure of the program
ES>E+T
VS.
E>TE
EE>¢| +TFE

= How to define syntax directed translation for
such grammars?

== | Ne solution is simple!

= Treat actions as grammar symbols

= define syntax-directed translation on the
original grammar:
=« define translation rules

= convert them to actions that push/pop the
semantic stack

= incorporate the action numbers into the
grammar rules
= then convert the grammar to LL(1)

= treat action numbers as regular grammar
symbols

iExample
E>E+T#1

non-LL(1):
>T

T>T*F#2
>F

#1: TTrans = pop(); ETrans = pop(); push Etrans + TTrans;
#2: FTrans = pop(); TTrans = pop(); push Ttrans * FTrans;

after removing immediate left recursion:
E>TE
E>+T#1FE
2¢
T>FT
T>*F#2T
2¢

== Example

= For the following grammar, give
= translation rules + translation actions,
= a CFG with actions so that the translation of an
input expression is the value of the expression.
= Do not worry that the grammar is not LL(1).
= then convert the grammar (including actions)
to LL(1)

E>E+T | E-T|T
T> T*F |T/F| F
F > int | (E)

