iType Checking

= Type Systems
= Type Equivalence

= Typing Expressions
= Coercion
= Overloading
= Error Recovery

= Typing Statements

= Polymorphic Types

${ Type Checking Situations

= EXpression typing
= Operands matching
= Selecting operand

= Coercing types
= Selecting among overload possibilities
= Polymorphic type expansion

*Type Systems - Rules

= Rules of a language

= Definition:
=« What are the base/immutable types?
=« What type constructors are available?
= Can types be named?
= Resolution:
= What operators can be applied to what types?
=« What forms of coercion are allowed?
= How are overloading situations resolved?

i‘ Type Systems — Base types

= Base/immutable types

= Generally objects with a direct machine
representation, where the objects can not
be further divided

= Examples: bool, char, int, float, double,
long int, unsigned int, ...
= Simple objects have direct types

= Literals: 3 (int), -5.0 (double)
= Variables: int x; (int) double y; (double)

Type Systems —
Pointer Constructor

s Constructors

= Pointer
« In C++ type *name, result is a pointer to a type (ptr to
type)

« Examples:
int *x; (x is a ptr to an int)
float **y; (y is a ptr to a ptr to a float)

= Operators related to pointer:
*x — dereference x (go to what x points at), in terms of
types, * applied to ptr to y, results in 'y
x=> equivalent to (*x). — compose * and . operations
X[...] — pointers can be used as standins for arrays (array
ref is just an address, pointer operation)

Type Systems —
Array Constructor

= Constructors

= Arrays
« In C++ type namefsize], result is array (0..size-1) of
type
= Examples:
int z[10]; array (0..9) of int
float *w[5]; array (0..4) of pointer to float
double t[10][9] is array (0..9) of array (0..8) of double

= Operators related to pointer:
x[expr] — refers to element of an array — equivalent to
*(x + sizeof(ArrayEl) * expr) — why arrays start at 0 in
C/C++
If x of type array (lo..hi) of fypex[...] returns type

Type Systems — Products

s Constructors

= Products

= Certain operations result in products
Function parameter lists
Function argument lists
Class/structure fields

= Type is the product composition of the individual types

= Examples:
(int x, float y, char z) — int X float X char
(3,'X",2.0,0) —int X char X double X int
class x { int y; float z; }; - int X float
Parameters, class fields are named

Type Systems —
Class/Struct/Record Constructor

= Constructors

= Structures — classes, records, etc.
= Types are products with named fields (can refer to
indivdual members by giving field name)
= Type is the product of the field types with names
attached
= Example:

class t { char x; inty; float z;}; - type is char(x) X int(y) X
float(z) with names attached

« Operators:

. operator (x.y) —if x is of type ... X &yp (y) X ..., resulting
type is typ

-> operator — composition of * and . operator x->y is (*x).

Type Systems —
= Function Constructor

= Constructors

= Functions

= Types are left hand side of products, followed
by ->, followed by result type

« Example:
int foo (float x, char y) { } — float X char — int

= Operator:
fname(args) — function call, if args match left hand
size of type associated with fname, resulting type is
the right hand side of type associated with fname
example: foo(3.0,X") has result type of int (from
above)

* Type Systems — Type Variables

= Type variables
= Some languages allow the definition of
type variables (often useful in dealing with
cyclic/recursively defined types)
= Type variable names often associated with
constructed types (e.g., class nhames)

= But allowing type names can introduce
some equivalence problems (more later)

w FOrms of Checking

= Static type checking — type checking done at
compile type
= Used in many strongly typed languages (where all
variables/objects must have types)
= Dynamic type checking — done at runtime
= Often used in languages where objects not
strongly type (e.g., Lisp)
= Type checking must be done at runtime (since
objects not guaranteed to have a single type)

* Type Equivalence

= Name equivalence — objects are considered to be
equivalent if they have the same (or in the case of
operators — appropriate names)

= Problem — if a type name is given to a type (Number
declared a synonym for int) this may introduce type errors
that are not real errors

= Structural equivalence — objects are considered
equivalent if they have similar structures
= Useful but can allow some mappings we may not want:
= class x { inty; float z;};

= class position { int angle, float distance; };

= X and position would be considered to be structurally
equivalent

iCyclic Types

= Many structures in programming languages
are declared recursively (linked lists, trees,
etc.)

= Example:
class LinkedList {
int data;
LinkedList *next;
}o
= next field’s type is based on the type it is part
of

* Cyclic Type Graphs

LinkedLis But how to compare this type
int/ « \ptr o (structurally or by name)?

Often use names for types to make graphs easier

(makes equivalence easier to determine)

LinkedList
int X ptr to

LinkedList

Sample Language

= Expressions

intLit (e.g., 1, 3, -5)
boollit(e.g., 0, 1)
varname

e+ e

el e

e,and e,
f(arglist)
v.field
*e

= Statements
if (e) stmt; else stmt, fi,
ident = expr;
R arglist);
= Simple types
= bool, int, void
= Constructors
= Products
= Structures
= Pointers

* Possible Nodes

= IntLitNode (ival)

= BoolLitNode (bval)

= VariableNode (name)
= BinaryNode (op,leftarg,rightarg)

= UnaryNode (op,arg)

= RecFieldNode (recexpr,fname)
= FuncCallNode (fname,arglist)
= IfNode(bexpr,ifstmt,elsestmt)

= Other:

= ArgListNode(arg,next)
= StmtListNode(stmt,next)

*When to Type Check

= Depending on language, type checks
can often be done in parsing

= Can also be done as a separate process

= If done as a separate process,
performed as a traversal of the AST(s)
from the program

= Generally two routines:
= Type of expressions
= Type of statements

== | YPiNg EXpressions

= Deals with expressions, possibly
complex expressions where we assume
the expressions will result in type

= Some simple:
Type IntLitNode::expr_type() { return int; }

Type BoolLitNode::expr_type() { return int; }
Type VariableNode::expr_type() {
return type of variable; }

iTyping Expressions - Operations

= Type arguments, then else if (op is == or <) {
check/compare results if ((lefttype == righttype) &&
(lefttype is int or bool)) {
. rettype = bool;
Type BinaryNode::expr_type() {
lefttype = leftarg->expr_type(); ¥
righttype = rightarg->expr_type(); else {
if (op is + or /) { rettype = error;
rettype = int; if ((lefttype != error) &&
if (lefttype != int) { (righttype != error))
rettype = error; report error,
if (lefttype != error) 3
report error; ¥
} else if (op is and)
if (righttype != int) { /* check both args are bool, if so, return
rettype = error; bool */
if (righttype != error) return rettype;
report error; 3
}

}

$ Typing Expressions

= What is missing?
= What about pointers?
= Probably should at least check for ==, and
maybe for <, + is a more interesting question
(and && and / seem unlikely)
=« Can we compare records?
=« Compare field by field?
=« Compare all of memory?

= Structural or name equivalence (note, looking
up names of objects corresponding to records
should give us a product type)

we COErcion

= It is reasonable (and in most cases desirable)
to allow some automatic coercion (ints to
floats for an addition)

= When do we do it? - During expression type

checking N
if (opis +) { /\
if (lefttype is float) and (righttype isint) 3.1 5
insert a inttofloat in right child +
} /\
3.1 intto{oat

5

§ Typing Expressions

= UnaryNode — similar to binary

= RecFieldNode — expression must return
product with field names (check if field name
fits)

= FuncCallNode — build up product type from
arglist, then check if type is in symbol table
for function name

= ArgListNode — returns type consisting of product
of type of current argument together with type
from remainder of argument list

&FChecking Function Call
foo(3,4.5,’A")

FuncCallNode Look for int X float X char for function named foo
-~ ~

foo ArgListNode Type: int X (rest) = int X float X char
S

3 ArgListNode Type: float X (rest) = float X char
S

4.5 ArgListNode Type: char
S

‘A null

If type int X float X char — float associated with foo, return type float

== Overloading

= Allow name for function to be inserted into symbol
table multiple times if type for parameter list
(product) differs

= When looking up function to be called match
argument type to each of the possibilities and pick
the one that matches

= Complicating issue — when coercion is allowed
matches may not be perfect
= If two possibilities are close, which one to choose
= Example:
= Definitions:
foo : int X float -> int
foo : float X int -> float
= Which to choose when matching arguments int X int?

= Error Recovery

= As with parsing, often want to find
multiple errors

= What to do when one error detected?

= Generally, return error as type but don't
generate further errors

« E.g., left argument of + returns error, still
want the right argument to be some type
that can be added

* Typing Statements

= Statements checking causes expression
type checks:

type StmtListNode::stmt_type() {
stmttype = stmt->stmt_type();
if (stmttype !'= void) report error;
nexttype = next->stmt_type();
if (nexttype != void) report error,
return void;

= |YPing Statements

= Parts of statement often must return type:

= Example: if condition must return boolean type
type IfNode::stmt_type() {
bexprtype = bexpr->expr_type();
if (bexprtype !'= bool) report error;
ifstmttype = ifstmt->stmt_type();
if (ifstmttype !'= void) report error;
if (elsestmt = 0) {
elsestmttype = elsestmt->stmt_type();
if (elsestmttype != void) report error;
by

return void;

}

* Polymorphic Type

= C++ has templates — types that have
placeholders so they can be applied to
multiple types of objects
= E.g., LinkedList of any type

= Polymorphic classes inserted into
symbol table
= Type resolved when needed

