« LE€Xical Analysis

= Readings
= Sections 2.1, 2.6
= Chapter 3
= TOpicCS
= Scanners
= Finite Automata
= Regular Expressions
= Conversion Processes
= Automating an Automaton

s SCaNNer

= Translate a sequence of characters into
a corresponding sequence of tokens

= Group characters into lexemes (sequences
of characters that go together)

= Determine token lexeme corresponds to
= Deciding how to break the characters
into groups is based on the language

« "An identifier is any letter followed by 0 or
more letters or digits”




iScanners in @ Compiler

= Scanners are generally called by the parser
(supply the next token from the file)

= Written either from scratch or using a
scanner generator:
= lex or flex (C)
= Jlex (Java)
= Scanner generators:
= Generally take regular expressions as input

= Produce a finite state machine (FSM)
implementation as output

$‘ Generating a Scanner

Regular
Expressions

Y
Nondeterministic

Finite Automata
(NFA)

Deterministic
Finite Automata

(DFA) \

Implementation
Of DFA




iFinite State Machine (FSM)

= A finite state machine (or finite
auotmaton) recognizes /egal strings
from a language

= Example: identifiers (letter followed by

letter or digit)
letter, digit

letter

O

* FSM Components

@ State
Transition (from state B to
@ state C on input “a”)
@ Start state
Vol
A final, halt or accepting state




iString Processing with a FSM

= Set the current state to the start state

= While there is still more input

= Look for a transition from the current state based
on the current input character

= Set the current state to the resulting state from the
transition

« If no transition stop (reject the string)

= Accept the string if the current state is a final
state (reject the string otherwise)

= Q: what if there is more than one transition?

i‘ Example FSM

= A number consists of one or more digits
with an optional sign (+ or -) plus an
optional decimal point




« FOrmal Definition of a FSM

= A finite automaton is a 5-tuple (%, Q, A,
s, F) where:
= An input alphabet X
= A set of states Q
= A start state s
= A set of accepting states F = Q

= A is the state transition function: Q x £ >
Q (i.e., encodes transitions state —input
state)

&N Types of Finite State Machines

= Deterministic (also called DFAs for
Deterministic Finite Automata)
= No state has more than one outgoing edge with
the same label
= Non-Deterministic (NFA)

= States may have more than one outgoing edge
with the same label

= Edges may be labeled with ¢ (epsilon), which
stands for the empty string (some use A instead)

= The FSM can follow an ¢ edge without considering the
current input character




*Why Use NFAs?

= Often simpler than DFA

= Easier to string together expressions
that cover different types of strings

= Processing in an NFA

= Current states represents the set of
possible current states

= An NFA accepts a string if there is a
sequence of moves starting in the start
state that consumes the entire string and
leaves the machine in a final state

* The Language of an FSM

= The language defined by a FSM is the
set of strings accepted by FSM.

= For FSM M we write L(M) for the
language defined by M.

= Two FSMs M and N are equivalent if
L(M) = L(N)

= Theorem: for every NFA M, there exists
an equivalent DFA A.




