= | Op-Down Parsing

= Top-down parsing methods
= Recursive descent
= Predictive parsing

= Implementation of parsers

= Two approaches

= Top-down — easier to understand and program
manually

= Bottom-up — more powerful, used by most parser
generators

= Reading: Section 4.4

${ Intro to Top-Down Parsing

= The parse tree is constructed |
« From the top SN
= From left to right t, 3 t,

= Terminals are seen in order of 4
appearance in the token stream: VAN

Ltk G 5 0t

&FRecursive Descent Parsing

= Consider the grammar
ES>T+E|T
T—int |int*T| (E)

= Token stream is: int; * int,

= Start with top-level non-terminal E

= Try the rules for E in order

Recursive Descent Parsing -
$ Example

TryEy—> T, + E

Then try a rule for T, — (E5)

= But (does not match input token intg

Try T, — int - Token matches.

« But + after T, does not match input token *
Try Ty > int * T,

« This will match but + after T, will be unmatched

Has exhausted the choices for T,
= Backtrack to choice for E,

Recursive Descent Parsing -
= EXample

= Follow same steps as before for T,
= And succeed with T, » int * T, and T, — int
= With the following parse tree

E,
|
s
int; x T,

Recursive Descent Parser -
$ Preliminaries

= Let TOKEN be the type of tokens

= Special tokens INT, OPEN, CLOSE, PLUS,
TIMES

= Let the global next point to the next
token

Recursive Descent Parser —
- Mplementing Productions

= Define boolean functions that check the token
string for a match of
= A given token terminal
bool term(TOKEN tok) { return *next++ ==
tok; }
= A given production of S (the nth)
bool S,(){ ... }
= Any production of S:
bool S(){ ... }

= These functions advance next

Recursive Descent Parser —
$N Implementing Productions

= For productionE — T
bool E,() { return T(); }

= For productionE — T + E
bool E,() { return T() && term(PLUS) && E(); }

= For all productions of E (with backtracking)
bool E() {
TOKEN *save = next;
return (next = save, E,())
|| (next = save, E,()); }

Recursive Descent Parser —
iImplementing Productions

= Functions for non-terminal T
bool T,() { return term(OPEN) && E() && term(CLOSE);
b

bool T,() { return term(INT) && term(TIMES) && T(); }
bool T5() { return term(INT); }

bool T() {
TOKEN *save = next;
return (next = save, T,())
|| (next = save, T,())
|| (next = save, T5()); }

Recursive Descent Parsing -

* Notes

= To start the parser
= Initialize next to point to first token
= Invoke E()

= Notice how this simulates our previous
example

= Easy to implement by hand
= But does not always work ...

When Recursive Descent Does
&FNot Work

= Consider a production S — S a

bool S,() { return S() && term(a); }
bool S() { return S,(); }

= S() will get into an infinite loop

» left-recursive grammar has a non-terminal S
S »* Sa for some a

= Recursive descent does not work in such
cases

« Elimination of Left Recursion

= Consider the left-recursive grammar
S—>Salp

= S generates all strings starting with a 3
and followed by a humber of o

= Can rewrite using right-recursion
S—>pY
S">aS'|e

More Elimination of Left-
iRecursion

= In general
S—>Soy|..|Say|Byl.|Bm

= All strings derived from S start with one

of B,,...,B,, and continue with several
instances of ay,...,a,

= Rewrite as
S>B,S|...|B,S
S>ayS|...10,5 ¢

$ General Left Recursion

= The grammar
S>Aal|d
A—>Sp
is also left-recursive because

S>tSBa

= This left-recursion can also be eliminated
= See book, Section 4.3 for general algorithm

Summary of Recursive
*Descent

= Simple and general parsing strategy
» Left-recursion must be eliminated first
= ... but that can be done automatically

= Unpopular because of backtracking
= Thought to be too inefficient

= In practice, backtracking is eliminated
by restricting the grammar

- Predictive Parsers

= Like recursive-descent but parser can
“predict” which production to use
= By looking at the next few tokens
= No backtracking

= Predictive parsers accept LL(k) grammars

= L means “left-to-right” scan of input

= L means “leftmost derivation”

= k means “predict based on k tokens of lookahead”
= In practice, LL(1) is used

&FLL(l) Languages

= In recursive-descent, for each non-terminal
and input token, may be a choice of
production

= LL(1) means that for each non-terminal and
token there is only one production

= Can be specified via 2D tables
= One dimension for current non-terminal to expand
= One dimension for next token
= A table entry contains one production

Predictive Parsing and Left
= Factoring

= Recall the grammar
E>T+E|T
T—int |int*T|(E)

= Hard to predict because
= For T two productions start with int
= For E it is not clear how to predict

= A grammar must be left-factored before use
for predictive parsing

&FLeft-Factoring Example

= Recall the grammar
ES>T+E|T
T—int |int*T|(E)

* Factor out common prefixes of productions
E>TX
X—>+E|e¢
T>(E)|intY
Yo>*T|e

$N LL(1) Parsing Table Example

= Left-factored grammar

E—TX X +E|e
T (E)|intY Y5 *T e
= LL(1) parsing table:
int * + () $
E| TX T X
X + E € €
T| intY (E)
Y *T € € €

iLL(l) Parsing Table Example

= Consider the [E, int] entry

= "When current non-terminal is E and next
input is int, use production E— T X"

= This production can generate an int in the
first place

= Consider the [Y,+] entry

= "When current non-terminal is Y and
current token is +, get rid of Y”

= Y can be followed by + only in a derivation
in which Y — ¢

* LL(1) Parsing Tables - Errors

= Blank entries indicate error situations
= Consider the [E, *] entry

= "There is no way to derive a string starting
with * from non-terminal E”

iUsing Parsing Tables

= Method similar to recursive descent, except
= For each non-terminal S
= We look at the next token a
= And chose the production shown at [S,a]
= We use a stack to keep track of pending non-
terminals

= We reject when we encounter an error state
= We accept when we encounter end-of-input

${ LL(1) Parsing Algorithm

initialize stack = <S $> and next
repeat
case stack of
<X, rest> :if T[X,*next] = Y,...Y,
then stack « <Y,... Y, rest>;
else error ();
<t, rest> :ift == *next ++
then stack < <rest>;
else error ();
until stack == < >

&FLL(l) Parsing Example

Stack Input Action

E $ int * int $ T X

T X $ int * int $ int Y
int Y X $§ int * int $ terminal
Y X $ * int $ * T

* T X § * int $ terminal
T X $ int $ int Y
int Y X § int $ terminal
Y XS $ 2

X $ $ €

$ $ ACCEPT

« Constructing Parsing Tables

= LL(1) languages are those defined by a
parsing table for the LL(1) algorithm

= No table entry can be multiply defined

= We want to generate parsing tables
from CFG

- COnstructing Parsing Tables

= If A — o, where in the line of A we place a ?
= In the column of t where t can start a string
derived from a
o>t
= We say that t € First(a)
= In column of tif o is € and t can follow an A
« SO"BALS
= We say t € Follow(A)

$ Computing First Sets

Definition: First(X) = {t | X > " ta} u{e | X >" &}

Algorithm sketch (see book for details):
1. for all terminals t do First(t) < {t}
2. for each production X — ¢ do First(X) < { ¢}

3 ifX—> A ..A o and ¢ e First(A), 1<i<n do
add First(a) to First(X)

4. foreach X — A; ... A, s.t. € € First(A;), 1 <i<ndo
add ¢ to First(X)

5. repeat steps 4 & 5 until no First set can be grown

- First Sets - Example

= Recall the grammar

E->TX X—>+E]|¢

T (E)|intY Y>*T|e
= First sets

First(() ={(} First(T) = {int, (}

First())={)} First(E) = {int, (}

First(int) = { int } First(X) ={+, ¢}

First(+)={+} First(Y) ={* ¢}

First(*)={*}

« Computing Follow Sets

» Definition:
Follow(X) ={t|S—>"BXtd}

= Intuition
= If S is the start symbol then $ < Follow(S)

« If X > A B then First(B) < Follow(A) and
Follow(X) < Follow(B)
= Also if B »™ ¢ then Follow(X) < Follow(A)

iComputing Follow Sets (Cont.)
Algorithm sketch:

1. Follow(S) €« {$}

2. For each production A - a X B
add First(B) - {¢} to Follow(X)

3. For each A — o X B where ¢ e First(p)
add Follow(A) to Follow(X)

= repeat step(s) 2-3 until no Follow set
grows

« FOllow Sets. Example

= Recall the grammar

E->TX X—>+E]|¢
T—>(E)]|intY Y>*T|e¢
= Follow sets

Follow(+) ={int, (} Follow(*)={int, (}
Follow(() ={int, (} Follow(E) =), $}
Follow(X) =4$,) } Follow(T) =<{+,), $}
Follow()) ={+,),$> Follow(Y)={+,), $}
Follow(int) = {*, +,), $}

Constructing LL(1) Parsing
&Jables

= Construct a parsing table T for CFG G

= For each production A — o in G do:
= For each terminal t € First(a) do
«T[A] =
= If ¢ € First(a), for each t € Follow(A) do
« T[A] =
» If ¢ € First(a) and $ € Follow(A) do
« T[A, $] =«

$ Notes on LL(1) Parsing Tables

= If any entry is multiply defined then G is
not LL(1)

= If G is ambiguous

= If G is left recursive

= If G is not left-factored

= And in other cases as well

= Most programming language grammars
are not LL(1)

= There are tools that build LL(1) tables

« Predictive Parsing Summary

= First and Follow sets are used to construct
predictive tables

= For non-terminal A and input t,
use a production A — a where t e First(a)

= For non-terminal A and input t,
if £ € First(A) and t e Follow(a), then
use a production A — o where ¢ e First(a)

= We'll see First and Follow sets again . . .

