
1

Bottom-Up Parsing
Bottom-up parsing is more general than
top-down parsing

Just as efficient
Builds on ideas in top-down parsing

Bottom-up is the preferred method in
practice

Reading: Section 4.5

An Introductory Example
Bottom-up parsers don’t need left-
factored grammars

Hence we can revert to the “natural”
grammar for our example:

E → T + E | T
T → int * T | int | (E)

Consider the string: int * int + int

2

The Idea
Bottom-up parsing reduces a string to the

start symbol by inverting productions:

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

Observation
Read productions from bottom-up parse
in reverse (i.e., from bottom to top)
This is a rightmost derivation!

E
E → T + ET + E
E → TT + T
T → intT + int
T → int * Tint * T + int
T → intint * int + int

3

A Bottom-up Parse

E

T + E

T + T

T + int

int * T + int

int * int + int
E

T E

+ int*int

T

int

T

A bottom-up parser traces a rightmost
derivation in reverse!

Bottom-up Parse in Detail

int * (int + int) + int

4

Trivial Bottom-Up Parsing
Algorithm
Let I = input string
repeat

pick a non-empty substring β of I
where X→ β is a production

if no such β, backtrack
replace one β by X in I

until I = “S” (the start symbol) or
all possibilities are exhausted

Questions
Does this algorithm terminate?

How fast is the algorithm?

Does the algorithm handle all cases?

How do we choose the substring to
reduce at each step?

5

Where Do Reductions Happen
Important Fact #1 has an interesting

consequence:
Let αβω be a step of a bottom-up parse
Assume the next reduction is by X→ β
Then ω is a string of terminals

Why? Because αXω → αβω is a step in a
right-most derivation

Notation
Idea: Split string into two substrings

Right substring is as yet unexamined by parsing
(a string of terminals)
Left substring has terminals and non-terminals

The dividing point is marked by a |
The | is not part of the string

Initially, all input is unexamined |x1x2 . . . xn

6

Shift-Reduce Parsing
Bottom-up parsing uses two kinds of

actions:

Shift

Reduce

Shift
Shift: Move | one place to the right

Shifts a terminal to the left string

ABC|xyz ⇒ ABCx|yz

7

Reduce
Apply an inverse production at the right
end of the left string

If A → xy is a production, then

Cbxy|ijk ⇒ CbA|ijk

Example with Reductions Only

reduce T → intT + int |
shiftT + | int

shiftint | * int + int
shiftint * | int + int

shift|int * int + int

E |
reduce E → T + ET + E |
reduce E → TT + T |

shiftT | + int
reduce T → int * Tint * T | + int
reduce T → intint * int | + int

8

The Example with Shift-
Reduce Parsing

reduce T → intT + int |
shiftT + | int

shiftint | * int + int
shiftint * | int + int

shift|int * int + int

E |
reduce E → T + ET + E |
reduce E → TT + T |

shiftT | + int
reduce T → int * Tint * T | + int
reduce T → intint * int | + int

Shift-Reduce Parse in Detail

int * (int + int) + int

9

The Stack
Left string can be implemented by a stack

Top of the stack is the |

Shift pushes a terminal on the stack

Reduce pops 0 or more symbols off of the
stack (production rhs) and pushes a non-
terminal on the stack (production lhs)

Key Issue (will be resolved by
algorithms)

How do we decide when to shift or
reduce?

Consider step int | * int + int
We could reduce by T → int giving T | * int
+ int
A fatal mistake: No way to reduce to the
start symbol E

10

Conflicts
Generic shift-reduce strategy:

If there is a handle on top of the stack, reduce
Otherwise, shift

But what if there is a choice?
If it is legal to shift or reduce, there is a
shift-reduce conflict
If it is legal to reduce by two different
productions, there is a reduce-reduce conflict

Source of Conflicts
Ambiguous grammars always cause
conflicts

But beware, so do many non-
ambiguous grammars

11

Conflict Example
Consider our favorite ambiguous

grammar:

int|

(E)|

E * E|

E + E→E

One Shift-Reduce Parse

E |
reduce E → E + EE + E |

.
reduce E → E * EE * E | + int

shift| int * int + int

reduce E → intE + int |
shiftE + | int
shiftE | + int

12

Another Shift-Reduce Parse

E |
reduce E → E * EE * E |

.
shiftE * E | + int

shift| int * int + int

reduce E → E + EE * E + E |
reduce E → intE * E + int |
shiftE * E + | int

Example Notes
In the second step E * E | + int we can either
shift or reduce by E → E * E

Choice determines associativity of + and *

As noted previously, grammar can be
rewritten to enforce precedence
Precedence declarations are an alternative

13

Precedence Declarations
Revisited

Precedence declarations cause shift-reduce
parsers to resolve conflicts in certain ways

Declaring “* has greater precedence than +”
causes parser to reduce at E * E | + int

More precisely, precedence declaration is
used to resolve conflict between reducing a *
and shifting a +

Precedence Declarations
Revisited (Cont.)

The term “precedence declaration” is
misleading

These declarations do not define
precedence; they define conflict
resolutions

Not quite the same thing!

