&FBottom-Up Parsing

= Bottom-up parsing is more general than
top-down parsing
= Just as efficient
= Builds on ideas in top-down parsing

= Bottom-up is the preferred method in
practice

= Reading: Section 4.5

< An Introductory Example

= Bottom-up parsers don't need left-
factored grammars

= Hence we can revert to the “natural”
grammar for our example:
EST+E|T
T—int*T|int| (E)

= Consider the string: int * int + int

&Jhe Idea

Bottom-up parsing reduces a string to the
start symbol by inverting productions:

int * int + int T — int
int*T +int T—>int*T
T + int T — int
T+T E—->T
T+E E->T+E
E

« Observation

= Read productions from bottom-up parse
in reverse (i.e., from bottom to top)

= This is a rightmost derivation!

int * int + int
int*T +int
T + int
T+T
T+E

E

T — int
T—>int*T
T —int
E->T
E->T+E

&FA Bottom-up Parse

int * int + int
int*T + int
T + int
T+T
T+ E

E

int * int + int
A bottom-up parser traces a rightmost
derivation in reverse!

$I¢ Bottom-up Parse in Detalil

int * (int + int) + int

Trivial Bottom-Up Parsing
*Algorithm

Let I = input string
repeat
pick a non-empty substring 8 of I
where X— B is a production
if no such B, backtrack
replace one 3 by X in I
until I =“S” (the start symbol) or
all possibilities are exhausted

- Questions

= Does this algorithm terminate?

= How fast is the algorithm?
= Does the algorithm handle all cases?

= How do we choose the substring to
reduce at each step?

iWhere Do Reductions Happen

Important Fact #1 has an interesting
consequence:
= Let afw be a step of a bottom-up parse
= Assume the next reduction is by X—
= Then o is a string of terminals

Why? Because aXo — ofw is a step in a
right-most derivation

- NOtation

= Idea: Split string into two substrings

= Right substring is as yet unexamined by parsing
(a string of terminals)

= Left substring has terminals and non-terminals

= The dividing point is marked by a |
= The | is not part of the string

= Initially, all input is unexamined [x;X, . . . X,

&FShift-Reduce Parsing

Bottom-up parsing uses two kinds of
actions:

Shift

Reduce

$ Shift

= Shift: Move | one place to the right
= Shifts a terminal to the left string

ABC|xyz = ABCx|yz

&FRed uce

= Apply an /nverse production at the right
end of the left string
= If A — Xy is a production, then

Cbxy|ijk = CbAlijk

$ Example with Reductions Only

int *int | + int
int *T | +int

T+ int |
T+T|
T+E|
E |

The Example with Shift-
- Reduce Parsing

lint * int + int shift
int | *int + int shift
int * | int + int shift
int *int | + int

int *T | +int

T|+int shift
T+ |int shift
T+ int|

T+T|

T+E|

E |

$‘ Shift-Reduce Parse in Detalil

int * (int + int) + int

iThe Stack

= Left string can be implemented by a stack
= Top of the stack is the |

= Shift pushes a terminal on the stack

= Reduce pops 0 or more symbols off of the
stack (production rhs) and pushes a non-
terminal on the stack (production |hs)

Key Issue (will be resolved by
<« algorithms)

= How do we decide when to shift or
reduce?
= Consider step int | * int + int
= We could reduce by T — int giving T | * int
+ int
= A fatal mistake: No way to reduce to the
start symbol E

iConﬂictS

= Generic shift-reduce strategy:

= If there is a handle on top of the stack, reduce
= Otherwise, shift

= But what if there is a choice?

« If it is legal to shift or reduce, there is a
shift-reduce conflict

« If it is legal to reduce by two different
productions, there is a reduce-reduce conflict

« Source of Conflicts

= Ambiguous grammars always cause
conflicts

= But beware, so do many non-
ambiguous grammars

- Conflict Example

Consider our favorite ambiguous

grammar:

E —

E+E
E*E

(E)

int

* One Shift-Reduce Parse

| int *int + int shift

E*E|+int

E|+int shift
E+|int shift
E+int |
E+E|

E |

&FAnother Shift-Reduce Parse

| int *int +int shift

E*E| +int shift

E*E+ |int shift
E*E+int|
E*E+E|

E*E|

E |

$ Example Notes

= In the second step E * E | + int we can either
shift or reduce by E — E * E

Choice determines associativity of + and *

As noted previously, grammar can be
rewritten to enforce precedence

Precedence declarations are an alternative

Precedence Declarations
- Revisited

s Precedence declarations cause shift-reduce
parsers to resolve conflicts in certain ways

= Declaring ™* has greater precedence than +”
causes parser to reduce at E * E | + int

= More precisely, precedence declaration is
used to resolve conflict between reducing a *
and shifting a +

Precedence Declarations
* Revisited (Cont.)

= The term “precedence declaration” is
misleading

= These declarations do not define
precedence; they define conflict
resolutions

= Not quite the same thing!

