
1

CS 5751 Machine 
Learning

Chapter 4  Artificial Neural Networks 1

Artificial Neural Networks 
• Threshold units

• Gradient descent

• Multilayer networks

• Backpropagation

• Hidden layer representations

• Example: Face recognition

• Advanced topics
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Connectionist Models
Consider humans
• Neuron switching time ~.001 second
• Number of neurons ~1010

• Connections per neuron ~104-5

• Scene recognition time ~.1 second
• 100 inference step does not seem like enough
must use lots of parallel computation!
Properties of artificial neural nets (ANNs):
• Many neuron-like threshold switching units
• Many weighted interconnections among units
• Highly parallel, distributed process
• Emphasis on tuning weights automatically
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When to Consider Neural Networks
• Input is high-dimensional discrete or real-valued (e.g., raw 

sensor input)
• Output is discrete or real valued
• Output is a vector of values
• Possibly noisy data
• Form of target function is unknown
• Human readability of result is unimportant

Examples:
• Speech phoneme recognition [Waibel]
• Image classification [Kanade, Baluja, Rowley]
• Financial prediction
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ALVINN drives 70 mph on highways
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Perceptron
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Decision Surface of Perceptron
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Represents some useful functions
• What weights represent g(x1,x2) = AND(x1,x2)?
But some functions not representable
• e.g., not linearly separable
• therefore, we will want networks of these ...
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Perceptron Training Rule
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Summary
Perceptron training rule guaranteed to succeed if
• Training examples are linearly separable
• Sufficiently small learning rate η

Linear unit training rule uses gradient descent
• Guaranteed to converge to hypothesis with 

minimum squared error
• Given sufficiently small learning rate η
• Even when training data contains noise
• Even when training data not separable by H
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Incremental (Stochastic) Gradient Descent
Batch mode Gradient Descent:
Do until satisfied:
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Incremental Gradient Descent can approximate Batch Gradient
Descent arbitrarily closely if η made small enough
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Multilayer Networks of Sigmoid Units
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Multilayer Decision Space
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Sigmoid Unit
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The Sigmoid Function

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

net input

ou
tp

ut

-xe
x

+
=

1
1)(σ

Sort of a rounded step function
Unlike step function, can take derivative (makes learning

possible)
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Error Gradient for a Sigmoid Unit
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Backpropagation Algorithm
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More on Backpropagation
• Gradient descent over entire network weight vector

• Easily generalized to arbitrary directed graphs

• Will find a local, not necessarily global error minimum
– In practice, often works well (can run multiple times)

• Often include weight momentum α

• Minimizes error over training examples

• Will it generalize well to subsequent examples?

• Training can take thousands of iterations -- slow!
– Using network after training is fast

)1(  )( ,,, −∆+=∆ nwxnw jijijji αδη
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Learning Hidden Layer Representations
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Learning Hidden Layer Representations

Inputs

Outputs
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Output Unit Error during Training

Sum of squared errors for each output unit
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Hidden Unit Encoding

Hidden unit encoding for one input
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Input to Hidden Weights
Weights from inputs to one hidden unit
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Convergence of Backpropagation
Gradient descent to some local minimum
• Perhaps not global minimum
• Momentum can cause quicker convergence
• Stochastic gradient descent also results in faster 

convergence
• Can train multiple networks and get different results (using 

different initial weights)

Nature of convergence
• Initialize weights near zero
• Therefore, initial networks near-linear
• Increasingly non-linear functions as training progresses
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Expressive Capabilities of ANNs
Boolean functions:
• Every Boolean function can be represented by network 

with a single hidden layer
• But that might require an exponential (in the number of 

inputs) hidden units

Continuous functions:
• Every bounded continuous function can be approximated 

with arbitrarily small error by a network with one hidden 
layer [Cybenko 1989; Hornik et al. 1989]

• Any function can be approximated to arbitrary accuracy by 
a network with two hidden layers [Cybenko 1988]
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Overfitting in ANNs

Error versus weight updates (example 1)
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Overfitting in ANNs

Error versus weight updates (Example 2)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0 1000 2000 3000 4000 5000 6000

Number of weight updates

Er
ro

r

Training set
Validation set



6

CS 5751 Machine 
Learning

Chapter 4  Artificial Neural Networks 31

Neural Nets for Face Recognition

30x32
inputs

left strt rgt up

Typical Input Images

90% accurate learning
head pose, and recognizing
1-of-20 faces
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Learned Network Weights

Typical Input Images

30x32
inputs

left strt rgt up
Learned Weights
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Alternative Error Functions
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Recurrent Networks

Feedforward
Network
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Recurrent Network
unfolded in time
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Neural Network Summary
• physiologically (neurons) inspired model
• powerful (accurate), slow, opaque (hard to 

understand resulting model)
• bias: preferential

– based on gradient descent
– finds local minimum
– effect by initial conditions, parameters

• neural units
– linear
– linear threshold
– sigmoid
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Neural Network Summary (cont)
• gradient descent

– convergence

• linear units
– limitation: hyperplane decision surface
– learning rule

• multilayer network
– advantage: can have non-linear decision surface
– backpropagation to learn

• backprop learning rule

• learning issues
– units used
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Neural Network Summary (cont)
• learning issues (cont)

– batch versus incremental (stochastic)
– parameters

• initial weights
• learning rate
• momentum

– cost (error) function
• sum of squared errors
• can include penalty terms

• recurrent networks
– simple
– backpropagation through time


