Instance Based Learning

- *k*-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

Instance-Based Learning

Key idea : just store all training examples $\langle x_i, f(x_i) \rangle$ Nearest neighbor (1 - Nearest neighbor) :

- Given query instance x_q , locate nearest example x_n , estimate $\hat{f}(x_q) \leftarrow f(x_n)$
- k Nearest neighbor :
- Given x_q, take vote among its k nearest neighbors (if discrete valued target function)
- Take mean of f values of k nearest neighbors (if real valued)

 $\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{\kappa} f(x_i)}{k}$

CS 5751 Machine Learning

When to Consider Nearest Neighbor

- Instance map to points in R^n
- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

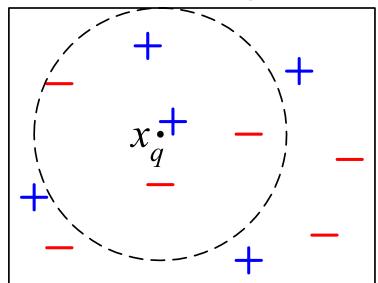
Disadvantages

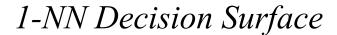
- Slow at query time
- Easily fooled by irrelevant attributes

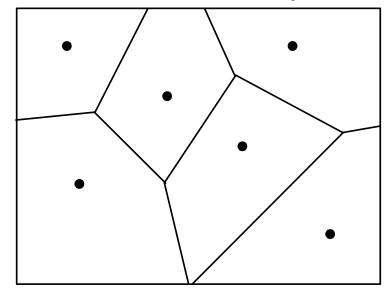
CS 5751 Machine Learning

k-NN Classification

5-Nearest Neighbor







CS 5751 Machine Learning

Behavior in the Limit

- Define *p(x)* as probability that instance *x* will be labeled 1 (positive) versus 0 (negative)
 Nearest Neighbor
- As number of training examples approaches infinity, approaches Gibbs Algorithm
 - Gibbs: with probability p(x) predict 1, else 0

k-Nearest Neighbor:

• As number of training examples approaches infinity and *k* gets large, approaches Bayes optimal

Bayes optimal: if p(x) > 0.5 then predict 1, else 0

• Note Gibbs has at most twice the expected error of Bayes optimal

CS 5751 Machine Learning

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note, now it makes sense to use *all* training examples instead of just *k*

 \rightarrow Shepard's method

CS 5751 Machine Learning

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled when high-dimensional *X*

One approach:

- Stretch *j*th axis by weight z_j , where $z_1, z_2, ..., z_n$ chosen to minimize prediction error
- Use cross-validation to automatically choose weights $z_1, z_2, ..., z_n$
- Note setting z_j to zero eliminates dimension *j* altogether see (Moore and Lee, 1994)

Locally Weighted Regression

- *k* NN forms local approximation to *f* for each query point x_q Why not form explicit approximation $\hat{f}(x)$ for region around x_q ?
- Fit linear function to k nearest neighbors
- Or fit quadratic, etc.
- Produces "piecewise approximation" to f

Several choices of error to minimize :

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors of } x_q} (f(x) - \hat{f}(x))^2$$

• Distance - weighted squared error over all neighbors

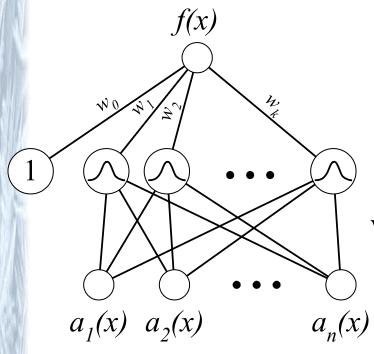
$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

CS 5751 Machine Learning

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, for example, in image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks



where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = e^{\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$

CS 5751 Machine Learning

Training RBF Networks

Q1: What x_u to use for kernel function $K_u(d(x_u, x))$?

- Scatter uniformly through instance space
- Or use training instances (reflects instance distribution)
 Q2: How to train weights (assume here Gaussian *K_u*)?
- First choose variance (and perhaps mean) for each K_u
 - e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function

Case-Based Reasoning

Can apply instance-based learning even when X ♣ Rⁿ
→ need different "distance" metric
Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions:

```
((user-complaint error53-on-shutdown)
```

```
(cpu-model PowerPC)
```

```
(operating-system Windows)
```

```
(network-connection PCIA)
```

(memory 48meg)

(installed-applications Excel Netscape VirusScan)

```
(disk 1Gig)
```

```
(likely-cause ???))
```

Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

• each training example:

<qualitative function, mechanical structure>

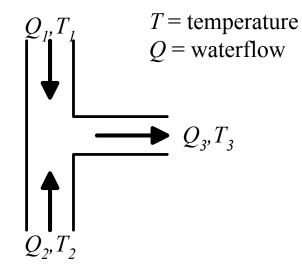
- new query: desired function
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

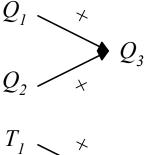
Case-Based Reasoning in CADET

A stored case: T-junction pipe

Structure:



Function:



A problem specification: Water faucet Structure: Function: $C_c \xrightarrow{+} Q_c \xrightarrow{+} Q_m$ P $T_c \xrightarrow{+} T_m$

CS 5751 Machine Learning

Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing

• k-Nearest Neighbor, Case-Based Reasoning

Eager: generalize before seeing query

• Radial basis function networks, ID3, Backpropagation, etc.

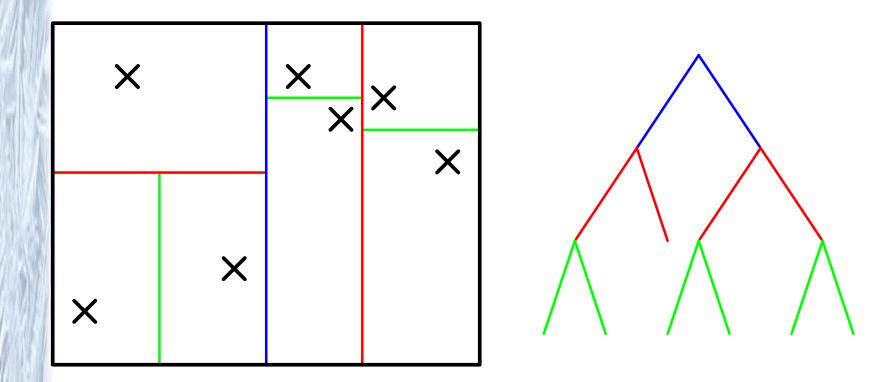
Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- If they use same *H*, lazy can represent more complex functions (e.g., consider *H*=linear functions)

kd-trees (Moore)

- *Eager* version of *k*-Nearest Neighbor
- Idea: decrease time to find neighbors
 - train by constructing a lookup (kd) tree
 - recursively subdivide space
 - ignore class of points
 - lots of possible mechanisms: grid, maximum variance, etc.
 - when looking for nearest neighbor search tree
 - nearest neighbor can be found in log(n) steps
 - k nearest neighbors can be found by generalizing process (still in log(n) steps if k is constant)
- Slower training but faster classification

kd Tree



Instance Based Learning Summary

- Lazy versus Eager learning
 - lazy work done at testing time
 - eager -work done at training time
 - instance based sometimes lazy
- *k*-Nearest Neighbor (*k*-nn) lazy
 - classify based on k nearest neighbors
 - key: determining neighbors
 - variations:
 - distance weighted combination
 - locally weighted regression
 - limitation: curse of dimensionality
 - "stretching" dimensions

CS 5751 Machine Learning

Instance Based Learning Summary

- *k*-d trees (eager version of *k*-nn)
 - structure built at train time to quickly find neighbors
- Radial Basis Function (RBF) networks (eager)
 - units active in region (sphere) of space
 - key: picking/training kernel functions
- Case-Based Reasoning (CBR) generally lazy
 - nearest neighbor when no continuos features
 - may have other types of features:
 - structural (graphs in CADET)