Instance Based Learning

- · k-Nearest Neighbor
- · Locally weighted regression
- Radial basis functions
- · Case-based reasoning
- · Lazy and eager learning

CS 5751 Machine Learning Chapter 8 Instance Based Learning

Instance-Based Learning

Key idea: just store all training examples $< x_i f(x_i) >$ Nearest neighbor (1 - Nearest neighbor):

• Given query instance x_q , locate nearest example x_n , estimate

$$\hat{f}(x_q) \leftarrow f(x_n)$$

k – Nearest neighbor:

- Given x_q, take vote among its k nearest neighbors (if discrete - valued target function)
- Take mean of f values of k nearest neighbors (if real valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

CS 5751 Machine Learning Chapter 8 Instance Based Learning

When to Consider Nearest Neighbor

- Instance map to points in \mathbb{R}^n
- · Less than 20 attributes per instance
- · Lots of training data

Advantages

- · Training is very fast
- Learn complex target functions
- · Do not lose information

Disadvantages

- · Slow at query time
- · Easily fooled by irrelevant attributes

CS 5751 Ma

Chapter 8 Instance Based Learning

K-NN Classification 5-Nearest Neighbor 1-NN Decision Surface CS 5751 Machine Learning Chapter 8 Instance Based Learning 4

Behavior in the Limit

Define p(x) as probability that instance x will be labeled 1 (positive) versus 0 (negative)

Nearest Neighbor

 As number of training examples approaches infinity, approaches Gibbs Algorithm
 Gibbs: with probability p(x) predict 1, else 0

k-Nearest Neighbor:

- As number of training examples approaches infinity and k gets large, approaches Bayes optimal
 Bayes optimal: if p(x) > 0.5 then predict 1, else 0
- Note Gibbs has at most twice the expected error of Bayes optimal

CS 5751 Machine

Chapter 8 Instance Based Learning

Distance-Weighted k-NN

Might want to weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_a, x_i)$ is distance between x_a and x_i

Note, now it makes sense to use all training examples instead of just k

→ Shepard's method

CS 5751 Machine

Chapter 8 Instance Based Learning

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest neighbor is easily misled when high-dimensional X

One approach:

- Stretch jth axis by weight z_i , where $z_1, z_2, ..., z_n$ chosen to minimize prediction error
- · Use cross-validation to automatically choose weights $Z_1, Z_2, ..., Z_n$
- Note setting z_i to zero eliminates dimension j altogether see (Moore and Lee, 1994)

CS 5751 Machine

Chapter 8 Instance Based Learning

Locally Weighted Regression

k - NN forms local approximation to f for each query point x_a

Why not form explicit approximation $\hat{f}(x)$ for region around x_a ?

- Fit linear function to k nearest neighbors
- · Or fit quadratic, etc.
- Produces "piecewise approximation" to f

Several choices of error to minimize:

• Squared error over k nearest neighbors

Squared error over
$$k$$
 nearest neighbor
$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors of } x_q} (f(x) - \hat{f}(x))^2$$

· Distance - weighted squared error over all neighbors

$$E_2(x_q) = \frac{1}{2} \sum_{x} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

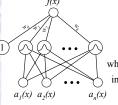
CS 5751 Machine

Chapter 8 Instance Based Learning

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, for example, in image classification
- · A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks



where $a_i(x)$ are the attributes describing

instance x, and

 $f(x) = w_0 + \sum_{n=0}^{\kappa} w_n K_n(d(x_n, x))$

One common choice for $K_u(d(x_u,x))$ is

$$K(d(x_u,x)) = e^{\frac{1}{2\sigma_u^2}d^2(x_u,x)}$$

CS 5751 Machine

Training RBF Networks

Q1: What x_n to use for kernel function $K_n(d(x_n,x))$?

- · Scatter uniformly through instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_{u})?

- First choose variance (and perhaps mean) for each K_{μ}
 - e.g., use EM
- Then hold K, fixed, and train linear output layer
 - efficient methods to fit linear function

CS 5751 Machine

Chapter 8 Instance Based Learning

11

Case-Based Reasoning

Can apply instance-based learning even when $X \clubsuit R^n$

→ need different "distance" metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions:

((user-complaint error53-on-shutdown)

(cpu-model PowerPC)

(operating-system Windows)

(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape

VirusScan)

(disk 1Gig)

(likely-cause ???))

CS 5751 Machine

Chapter 8 Instance Based Learning

12

Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

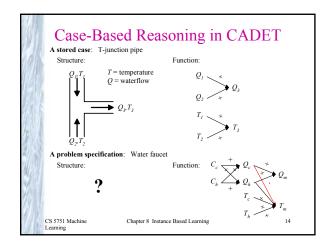
- each training example:
 - <qualitative function, mechanical structure>
- · new query: desired function
- · target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

CS 5751 Machine Learning Chapter 8 Instance Based Learning

13

17



Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- · Area of ongoing research

CS 5751 Machine Learning Chapter 8 Instance Based Learning

Lazy and Eager Learning

Lazy: wait for query before generalizing

k-Nearest Neighbor, Case-Based Reasoning

Eager: generalize before seeing query

· Radial basis function networks, ID3, Backpropagation, etc.

Does it matter?

- Eager learner must create global approximation
- · Lazy learner can create many local approximations
- If they use same H, lazy can represent more complex functions (e.g., consider H=linear functions)

CS 5751 Machine

Chapter 8 Instance Based Learning

*k*d-trees (Moore)

- Eager version of k-Nearest Neighbor
- Idea: decrease time to find neighbors
 - train by constructing a lookup (kd) tree
 - recursively subdivide space
 - · ignore class of points
 - · lots of possible mechanisms: grid, maximum variance, etc.
 - when looking for nearest neighbor search tree
 - nearest neighbor can be found in log(n) steps
 - k nearest neighbors can be found by generalizing process (still in log(n) steps if k is constant)
- Slower training but faster classification

CS 5751 Machine Learning Chapter 8 Instance Based Learning

CS 5751 Machine Learning 18

Instance Based Learning Summary

- · Lazy versus Eager learning
 - lazy work done at testing time
 - eager -work done at training time
 - instance based sometimes lazy
- k-Nearest Neighbor (k-nn) lazy
 - classify based on k nearest neighbors
 - key: determining neighbors
 - variations:
 - · distance weighted combination
 - · locally weighted regression
 - limitation: curse of dimensionality
 - · "stretching" dimensions

CS 5751 Machine Chapter 8 Instance Based Learning Learning

Instance Based Learning Summary

- k-d trees (eager version of k-nn)
 - structure built at train time to quickly find neighbors
- Radial Basis Function (RBF) networks (eager)
 - units active in region (sphere) of space
 - key: picking/training kernel functions
- Case-Based Reasoning (CBR) generally lazy
 - $-\,$ nearest neighbor when no continuos features
 - may have other types of features:structural (graphs in CADET)

CS 5751 Machine Learning

19

Chapter 8 Instance Based Learning

20