Learning Sets of Rules

- Sequential covering algorithms
- FOIL
- Induction as the inverse of deduction
- Inductive Logic Programming

Learning Disjunctive Sets of Rules

Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm

- 1. Learn one rule with high accuracy, any coverage
- 2. Remove positive examples covered by this rule
- 3. Repeat

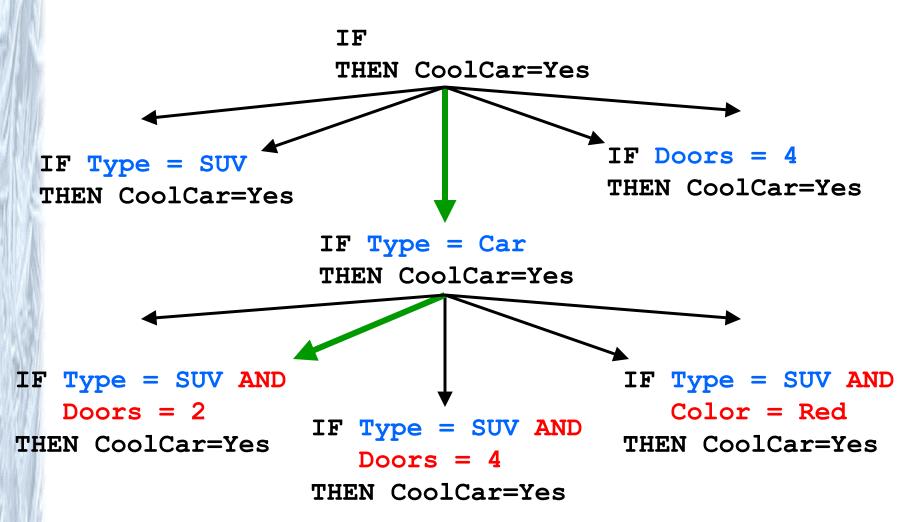
Sequential Covering Algorithm

SEQUENTIAL-COVERING(Target_attr,Attrs,Examples,Thresh) Learned_rules \leftarrow {}

Rule ← LEARN-ONE-RULE(*Target_attr,Attrs,Examples*) while PERFORMANCE(*Rule,Examples*) > *Thresh* do

- Learned_rules \leftarrow Learned_rules + Rule
- Examples ← Examples {examples correctly classified by Rule}
- *Rule* ← LEARN-ONE-RULE(*Target_attr,Attrs,Examples*)
 Learned_rules ← sort *Learned_rules* according to
 PERFORMANCE over *Examples* return *Learned_rules*

Learn-One-Rule



Covering Rules

 $Pos \leftarrow positive Examples$ $Neg \leftarrow$ negative *Examples* while *Pos* do (*Learn a New Rule*) *NewRule* \leftarrow most general rule possible *NegExamplesCovered* \leftarrow *Neg* while NegExamplesCovered do Add a new literal to specialize NewRule 1. Candidate literals \leftarrow generate candidates 2. Best_literal $\leftarrow \operatorname{argmax}_{L \in candidate literals}$ PERFORMANCE(SPECIALIZE-RULE(*NewRule*,*L*)) 3. Add Best literal to NewRule preconditions 4. *NegExamplesCovered* ← subset of *NegExamplesCovered* that satistifies *NewRule* preconditions *Learned rules* \leftarrow *Learned rules* + *NewRule* $Pos \leftarrow Pos - \{\text{members of } Pos \text{ covered by } NewRule\}$ Return Learned rules CS 5751 Machine Chapter 10 Learning Sets of Rules

Learning

Subtleties: Learning One Rule

- 1. May use beam search
- 2. Easily generalize to multi-valued target functions
- 3. Choose evaluation function to guide search:
 - Entropy (i.e., information gain)
 - Sample accuracy:

n

 n_c

where $n_c = \text{correct predictions}$,

n =all predictions

- m estimate: $n_c + mp$

n + m

CS 5751 Machine Learning

Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- General \rightarrow specific, or specific \rightarrow general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation functions?

Learning First Order Rules

Why do that?

- Can learn sets of rules such as $Ancestor(x,y) \leftarrow Parent(x,y)$ $Ancestor(x,y) \leftarrow Parent(x,z) \land Ancestor(z,y)$
- General purpose programming language
 PROLOG: programs are sets of such rules

First Order Rule for Classifying Web Pages From (Slattery, 1997)

```
course(A) ←
has-word(A,instructor),
NOT has-word(A,good),
link-from(A,B)
has-word(B,assignment),
NOT link-from(B,C)
```

Train: 31/31, Test 31/34

CS 5751 Machine Learning

FOIL

FOIL(*Target predicate*,*Predicates*,*Examples*) $Pos \leftarrow positive Examples$ $Neg \leftarrow$ negative *Examples* while *Pos* do (*Learn a New Rule*) *NewRule* \leftarrow most general rule possible $NegExamplesCovered \leftarrow Neg$ while NegExamplesCovered do Add a new literal to specialize NewRule 1. Candidate literals \leftarrow generate candidates 2. *Best_literal* \leftarrow argmax_{$L \in candidate literal} FOIL_GAIN($ *L*,*NewRule*)</sub>3. Add Best literal to NewRule preconditions 4. *NegExamplesCovered* ← subset of *NegExamplesCovered* that satistifies NewRule preconditions *Learned rules* \leftarrow *Learned rules* + *NewRule* $Pos \leftarrow Pos - \{\text{members of } Pos \text{ covered by } NewRule\}$ Return Learned rules CS 5751 Machine Chapter 10 Learning Sets of Rules Learning

Specializing Rules in FOIL

Learning rule: $P(x_1, x_2, ..., x_k) \leftarrow L_1 ... L_n$ Candidate specializations add new literal of form:

- $Q(v_1, ..., v_r)$, where at least one of the v_i in the created literal must already exist as a variable in the rule
- $Equal(x_j, x_k)$, where x_j and x_k are variables already present in the rule
- The negation of either of the above forms of literals

Information Gain in FOIL FOIL_GAIN(L, R) = $t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right)$ Where

- *L* is the candidate literal to add to rule *R*
- p_0 = number of positive bindings of *R*
- n_0 = number of negative bindings of *R*
- p_1 = number of positive bindings of R+L
- n_1 = number of negative bindings of R+L
- *t* is the number of positive bindings of *R* also covered by *R+L*

Note

• $-\log_2 \frac{p_0}{p_0 + n_0}$ is optimal number of bits to indicate the class of a positive binding covered by *R* CS 5751 Machine Chapter 10 Learning Sets of Rules 12 Learning 12 Induction as Inverted Deduction Induction is finding *h* such that $(\forall < x_i, f(x_i) \ge D) B \land h \land x_i \models f(x_i)$

where

- x_i is the *i*th training instance
- $f(x_i)$ is the target function value for x_i
- *B* is other background knowledge

So let's design inductive algorithms by inverting operators for automated deduction!

CS 5751 Machine Learning

Induction as Inverted Deduction

"pairs of people, <u,v> such that child of u is v,"

 $\begin{array}{l} f(x_i) : Child(Bob,Sharon) \\ x_i : Male(Bob), Female(Sharon), Father(Sharon, Bob) \\ B : Parent(u,v) \leftarrow Father(u,v) \end{array}$

What satisfies $(\forall \langle x_i, f(x_i) \rangle \in D) B \land h \land x_i \models f(x_i)$? $h_1 : Child(u, v) \leftarrow Father(v, u)$ $h_2 : Child(u, v) \leftarrow Parent(v, u)$

CS 5751 Machine Learning

Induction and Deduction

Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much difference in difficulty may exist between a direct and inverse operation; ... it must be allowed that inductive investigations are of a far higher degree of difficulty and complexity than any question of deduction ... (Jevons, 1874)

Induction as Inverted Deduction We have mechanical deductive operators F(A,B) = C, where $A \wedge B \models C$

need *inductive* operators O(B,D) = h where $(\forall < x_i, f(x_i) \ge \in D) B \land h \land x_i \models -f(x_i)$

Induction as Inverted Deduction

Positives:

- Subsumes earlier idea of finding *h* that "fits" training data
- Domain theory *B* helps define meaning of "fit" the data $B \wedge h \wedge x_i \models f(x_i)$
- Suggests algorithms that search *H* guided by *B* Negatives:
- Doesn't allow for noisy data. Consider

 $(\forall < x_i, f(x_i) \ge \in D) B \land h \land x_i \mid -f(x_i)$

- First order logic gives a huge hypothesis space *H*
 - overfitting...
 - intractability of calculating all acceptable *h*'s

CS 5751 Machine Learning

Deduction: Resolution Rule

 $P \lor L$ $\neg L \lor R$ $P \lor R$

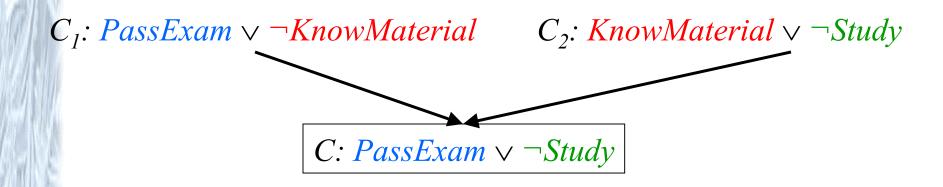
- 1. Given initial clauses C1 and C2, find a literal L from clause C1 such that $\neg L$ occurs in clause C2.
- 2. Form the resolvent *C* by including all literals from *C1* and *C2*, except for *L* and $\neg L$. More precisely, the set of literals occurring in the conclusion *C* is

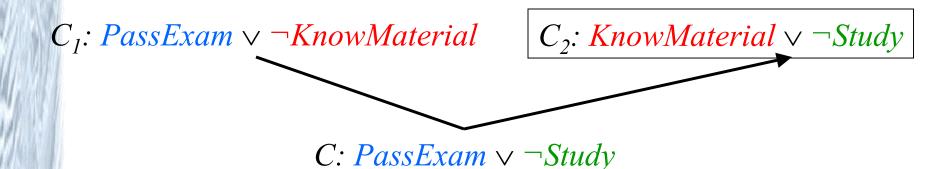
$$C = (C1 - \{L\}) \cup (C2 - \{\neg L\})$$

where \cup denotes set union, and "-" set difference.

CS 5751 Machine Learning

Inverting Resolution





Inverted Resolution (Propositional)

- 1. Given initial clauses C_1 and C, find a literal L that occurs in clause C_1 , but not in clause C.
- 2. Form the second clause C_2 by including the following literals

$$C_2 = (C - (C_1 - \{L\})) \cup \{\neg L\}$$

First Order Resolution

1. Find a literal L_1 from clause C_1 , literal L_2 from clause C_2 , and substitution θ such that

$$L_1 \theta = \neg L_2 \theta$$

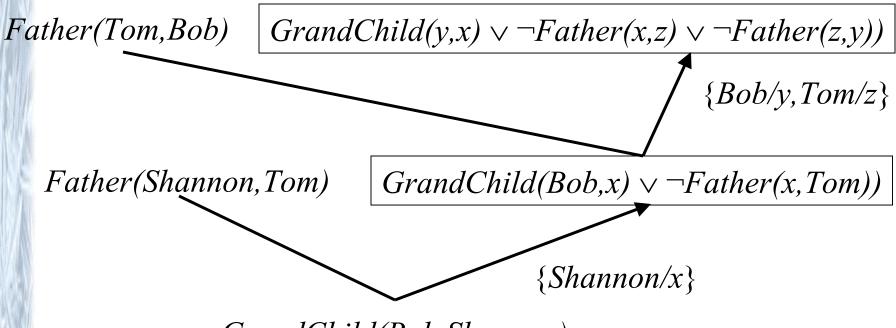
2. Form the resolvent *C* by including all literals from $C_1\theta$ and $C_2\theta$, except for L_1 theta and $\neg L_2\theta$. More precisely, the set of literals occuring in the conclusion is

$$C = (C_1 - \{L_1\})\theta \cup (C_2 - \{L_2\})\theta$$

Inverting:

$$C_2 = (C - (C_1 - \{L_1\}) \theta_1) \theta_2^{-1} \cup \{\neg L_1 \theta_1 \theta_2^{-1}\}$$

Cigol



GrandChild(Bob,Shannon)

Progol

PROGOL: Reduce combinatorial explosion by generating the most specific acceptable *h*

- 1. User specifies *H* by stating predicates, functions, and forms of arguments allowed for each
- 2. PROGOL uses sequential covering algorithm.
 - For each $< x_i, f(x_i) >$
 - Find most specific hypothesis h_i s.t.

 $B \wedge h_i \wedge x_i \mid -f(x_i)$

actually, only considers k-step entailment

3. Conduct general-to-specific search bounded by specific hypothesis h_i , choosing hypothesis with minimum description length

CS 5751 Machine Learning

Learning Rules Summary

- Rules: easy to understand
 - Sequential covering algorithm
 - generate one rule at a time
 - general to specific add antecedents
 - specific to general delete antecedents
 - Q: how to evaluate/stop?
- First order logic and covering
 - how to connect variables
 - FOIL

CS 5751 Machine Learning

Learning Rules Summary (cont)

- Induction as inverted deduction
 - what background rule would allow deduction?
 - resolution
 - inverting resolution
 - and first order logic
 - Cigol, Progol