Combining Inductive and Analytical Learning

- Why combine inductive and analytical learning?
- KBANN: prior knowledge to initialize the hypothesis
- TangentProp, EBNN: prior knowledge alters search objective
- FOCL: prior knowledge alters search operators

Inductive and Analytical Learning

Inductive learning

Hypothesis fits data

Statistical inference Requires little prior knowledge

Syntactic inductive bias

Analytical learning

Hypothesis fits domain theory

Deductive inference

Learns from scarce data

Bias is domain theory

What We Would Like

Inductive learning	Analytical learning	
Plentiful data	Scarce data	
No prior knowledge	Perfect prior knowledge	
• General purpose learning method:		
	1 11 1 1	

- No domain theory \rightarrow learn as well as inductive methods
- Perfect domain theory \rightarrow learn as well as **PROLOG-EBG**

Learning

- Accommodate arbitrary and unknown errors in domain theory
- Accommodate arbitrary and unknown errors in training data CS 5751 Machine Chapter 12 Comb. Inductive/Analytical

Domain Theory

Cup ← Stable, Liftable, OpenVessel Stable ← BottomIsFlat Liftable ← Graspable, Light Graspable ← HasHandle OpenVessel ← HasConcavity, ConcavityPointsUp

BottomIsFlat Light HasHandle HasConcavity ConcavityPointsUp

CS 5751 Machine Learning

Training Examples

	Cups	Non-Cups
BottomIsFlat	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
ConcavityPointsUp	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
Expensive	$\sqrt{\sqrt{1-1}}$	$\sqrt{\sqrt{\sqrt{1-1}}}$
Fragile	$\sqrt{\sqrt{1}}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
HandleOnTop		$ \sqrt{\sqrt{\sqrt{1-1}}} $
HandleOnSide	$\sqrt{1}$	
HasConcavity	$\bigvee \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
HasHandle	$\sqrt{1}$	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
Light	$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
MadeOfCeramic		$ \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
MadeOfPaper		
MadeOfStyroForm	$\sqrt{\sqrt{1}}$	$$

CS 5751 Machine Learning

KBANN

Knowledge Based Artificial Neural Networks

KBANN (data *D*, domain theory *B*)1. Create a feedforward network *h* equivalent to *B*2. Use BACKPROP to tune *h* to fit *D*

Neural Net Equivalent to Domain Theory

Expensive BottomIsFlat Stable MadeOfCeramic MadeOfStyrofoam MadeOfPaper HasHandle Graspable Liftable Cup HandleOnTop HandleOnSide Light **OpenVessel** HasConcavity **ConcavityPointsUp** large positive weight Fragile large negative weight negligible weight

CS 5751 Machine Learning

Creating Network Equivalent to Domain Theory

Create one unit per horn clause rule (an AND unit)

- Connect unit inputs to corresponding clause antecedents
- For each non-negated antecedent, corresponding input weight $w \leftarrow W$, where W is some constant
- For each negated antecedent, weight $w \leftarrow -W$
- Threshold weight $w_0 \leftarrow -(n .5) W$, where *n* is number of non-negated antecedents
- Finally, add additional connections with near-zero weights

Liftable \leftarrow *Graspable*, \neg *Heavy*

Result of Refining the Network

Expensive BottomIsFlat Stable MadeOfCeramic MadeOfStyrofoam MadeOfPaper HasHandle Graspable Liftable Cup HandleOnTop HandleOnSide Light HasConcavity **OpenVessel**⁴ **ConcavityPointsUp** large positive weight Fragile large negative weight negligible weight

CS 5751 Machine Learning

KBANN Results

Classifying promoter regions in DNA (leave one out testing):

- Backpropagation: error rate 8/106
- KBANN: 4/106

Similar improvements on other classification, control tasks.

CS 5751 Machine Learning

EBNN

Explanation Based Neural Network

Key idea:

- Previously learned approximate domain theory
- Domain theory represented by collection of neural networks
- Learn target function as another neural network

Explanation in Terms of Domain Theory

Prior learned networks for useful concepts combined into a single target network

TangetProp

Assume x, f(x) and $\frac{\partial f(x)}{\partial x}\Big|_{x_i}$ provided as input

Modified objective for gradient descent :

$$E = \sum_{i} \left[(f(x_i) - \hat{f}(x_i))^2 + \mu_i \sum_{j} \left(\frac{\partial A(x)}{\partial x^j} - \frac{\partial \hat{f}(x)}{\partial x^j} \right)^2 (x = x_i) \right]$$

where

$$\mu_i \equiv 1 - \frac{\left|A(x_i) - f(x_i)\right|}{c}$$

- f(x) is target function
- $\hat{f}(x)$ is neural net approximation to f(x)
- A(x) is domain theory approximation to f(x)

CS 5751 Machine Learning

Hypothesis Space Search in TangentProp

Hypothesis Space

CS 5751 Machine Learning

FOCL

- Adaptation of FOIL that uses domain theory
- When adding a literal to a rule, not only consider adding single terms, but also think about adding terms from domain theory
- May also prune specializations generated

Search in FOCL

Inductive/Analytical

Learning

FOCL Results

Recognizing legal chess endgame positions:

- 30 positive, 30 negative examples
- FOIL: 86%
- FOCL: 94% (using domain theory with 76% accuracy)

NYNEX telephone network diagnosis

- 500 training examples
- FOIL: 90%
- FOCL: 98% (using domain theory with 95% accuracy)

CS 5751 Machine Learning