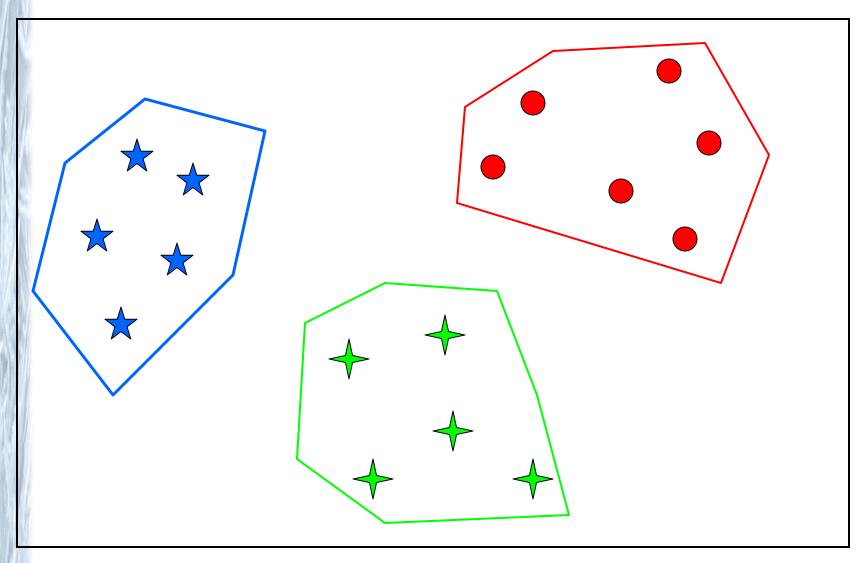
Clustering

- Unsupervised learning
- Generating "classes"
- Distance/similarity measures
- Agglomerative methods
- Divisive methods

What is Clustering?

- Form of *unsupervised* learning no information from teacher
- The process of partitioning a set of data into a set of meaningful (hopefully) sub-classes, called *clusters*
- Cluster:
 - collection of data points that are "similar" to one another and collectively should be treated as group
 - as a collection, are sufficiently different from other groups

Clusters



CS 5751 Machine Learning

Characterizing Cluster Methods

- Class label applied by clustering algorithm
 - hard versus fuzzy:
 - hard either is or is not a member of cluster
 - fuzzy member of cluster with probability
- Distance (similarity) measure value indicating how similar data points are
- Deterministic versus stochastic
 - deterministic same clusters produced every time
 - stochastic different clusters may result
- Hierarchical points connected into clusters using a hierarchical structure

Basic Clustering Methodology

Two approaches:

Agglomerative: pairs of items/clusters are successively linked to produce larger clusters

Divisive (partitioning): items are initially placed in one cluster and successively divided into separate groups

Cluster Validity

- One difficult question: how *good* are the clusters produced by a particular algorithm?
- Difficult to develop an objective measure
- Some approaches:
 - external assessment: compare clustering to a priori clustering
 - internal assessment: determine if clustering intrinsically appropriate for data
 - relative assessment: compare one clustering methods results to another methods

Basic Questions

- Data preparation getting/setting up data for clustering
 - extraction
 - normalization
- Similarity/Distance measure how is the distance between points defined
- Use of domain knowledge (prior knowledge)
 - can influence preparation, Similarity/Distance measure
- Efficiency how to construct clusters in a reasonable amount of time

Distance/Similarity Measures

- Key to grouping points
 distance = inverse of similarity
- Often based on representation of objects as feature vectors

An Employee DB

ID	Gender	Age	Salary		
1	F	27	19,000		
2	М	51	64,000		
3	М	52	100,000		
4	F	33	55,000		
5	М	45	45,000		

Term Frequencies for Documents

	T1	T2	T3	T4	T5	T6
Doc1	0	4	0	0	0	2
Doc2	3	1	4	3	1	2
Doc3	3	0	0	0	3	0
Doc4	0	1	0	3	0	0
Doc5	2	2	2	3	1	4

Which objects are more similar?

Distance/Similarity Measures

Properties of measures:

based on feature values $x_{instance\#,feature\#}$ for all objects x_i ,B, $\operatorname{dist}(x_i, x_j) \ge 0$, $\operatorname{dist}(x_i, x_j) = \operatorname{dist}(x_j, x_i)$ for any object x_i , $\operatorname{dist}(x_i, x_i) = 0$

$$dist(x_i, x_j) \le dist(x_i, x_k) + dist(x_k, x_j)$$

Manhattan distance: | features |

$$\sum_{f=1}^{\infty} |x_{i,f} - x_{j,f}|$$

Euclidean distance:

$$\sqrt{\sum_{f=1}^{|features|} (x_{i,f} - x_{j,f})^2}$$

Distance/Similarity Measures

Minkowski distance (p): $\sum_{f=1}^{p} (x_{i,f} - x_{j,f})^{p}$

Mahalanobis distance: $(x_i - x_j) \nabla^{-1} (x_i - x_j)^T$ where ∇^{-1} is covariance matrix of the patterns

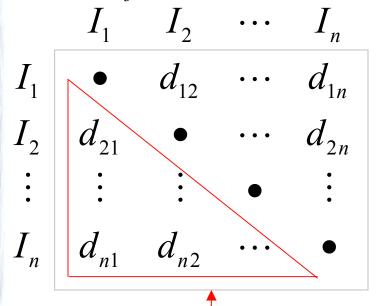
More complex measures:

Mutual Neighbor Distance (MND) - based on a count of number of neighbors

Distance (Similarity) Matrix

• Similarity (Distance) Matrix

- based on the distance or similarity measure we can construct a symmetric matrix of distance (or similarity values)
- (i, j) entry in the matrix is the distance (similarity) between items i and j



Note that $d_{ij} = d_{ji}$ (i.e., the matrix is symmetric). So, we only need the lower triangle part of the matrix.

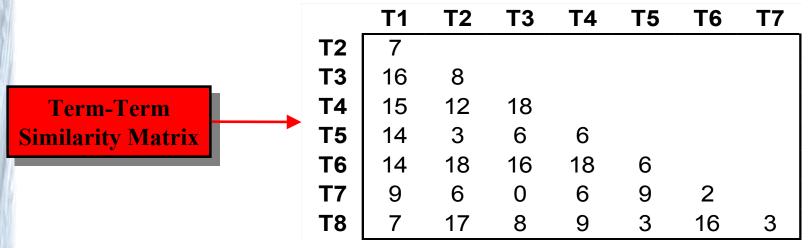
The diagonal is all 1's (similarity) or all 0's (distance)

 d_{ij} = similarity (or distance) of D_i to D_j

Example: Term Similarities in Documents

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	0	1
Doc3	3	0	0	0	3	0	3	0
Doc4	0	1	0	3	0	0	2	0
Doc5	2	2	2	3	1	4	0	2

$$sim(T_i, T_j) = \sum_{k=1}^{N} (w_{ik} \cdot w_{jk})$$

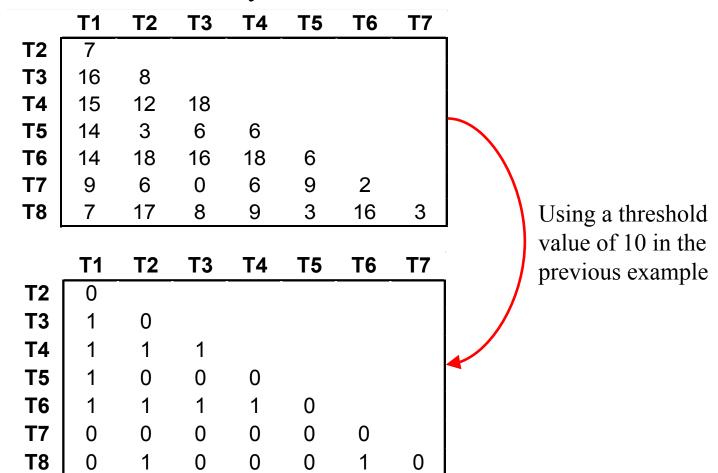


CS 5751 Machine Learning

Data Clustering

Similarity (Distance) Thresholds

 A similarity (distance) threshold may be used to mark pairs that are "sufficiently" similar

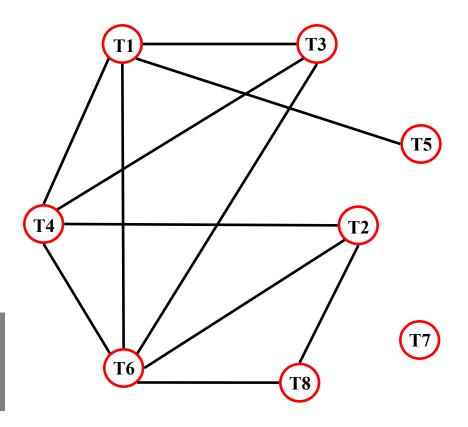


Graph Representation

- The similarity matrix can be visualized as an undirected graph
 - each item is represented by a node, and edges represent the fact that two items are similar (a one in the similarity threshold matrix)

	T1	T2	T3	T4	T5	T6	T7
T2	0						
T3	1	0					
T4	1	1	1				
T5	1	0	0	0			
T6	1	1	1	1	0		
T7	0	0	0	0	0	0	
T8	0	1	0	0	0	1	0

If no threshold is used, then matrix can be represented as a weighted graph



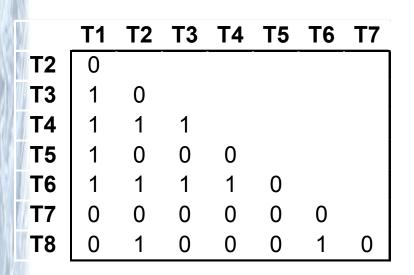
Agglomerative Single-Link

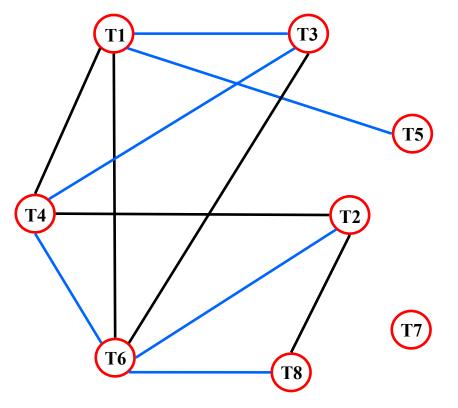
- Single-link: connect all points together that are within a threshold distance
- Algorithm:
 - 1. place all points in a cluster
 - 2. pick a point to start a cluster
 - 3. for each point in current cluster add all points within threshold not already in cluster repeat until no more items added to cluster
 - 4. remove points in current cluster from graph
 - 5. Repeat step 2 until no more points in graph

Example

VIII	T1	T2	Т3	T4	T5	T6	T7
T2	7						
T3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	17	8	9	3	16	3

All points except T7 end
up in one cluster





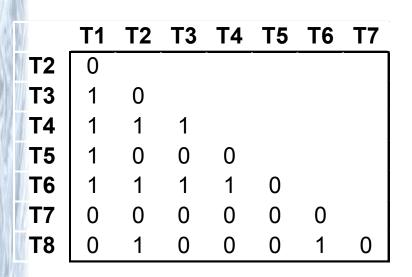
Agglomerative Complete-Link (Clique)

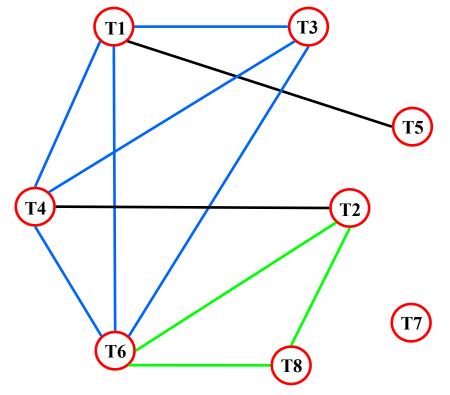
- Complete-link (clique): all of the points in a cluster must be within the threshold distance
- In the threshold distance matrix, a clique is a complete graph
- Algorithms based on finding maximal cliques (once a point is chosen, pick the largest clique it is part of)
 - not an easy problem

Example

	T1	T2	Т3	T4	T5	T6	T7
T2	7						
T3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	17	8	9	3	16	3

Different clusters possible based on where cliques start

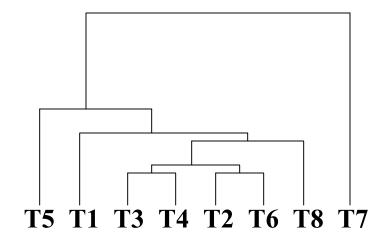




Hierarchical Methods

- Based on some method of representing hierarchy of data points
- One idea: hierarchical dendogram (connects points based on similarity)

78	T1	T2	Т3	T4	T5	T6	T7
T2	7						
T3	16	8					
T4	15	12	18				
T5	14	3	6	6			
T6	14	18	16	18	6		
T7	9	6	0	6	9	2	
T8	7	17	8	9	3	16	3
A LINE I							



Hierarchical Agglomerative

- Compute distance matrix
- Put each data point in its own cluster
- Find most similar pair of clusters
 - merge pairs of clusters (show merger in dendogram)
 - update proximity matrix
 - repeat until all patterns in one cluster

Partitional Methods

- Divide data points into a number of clusters
- Difficult questions
 - how many clusters?
 - how to divide the points?
 - how to represent cluster?
- Representing cluster: often done in terms of centroid for cluster
 - centroid of cluster minimizes squared distance between the centroid and all points in cluster

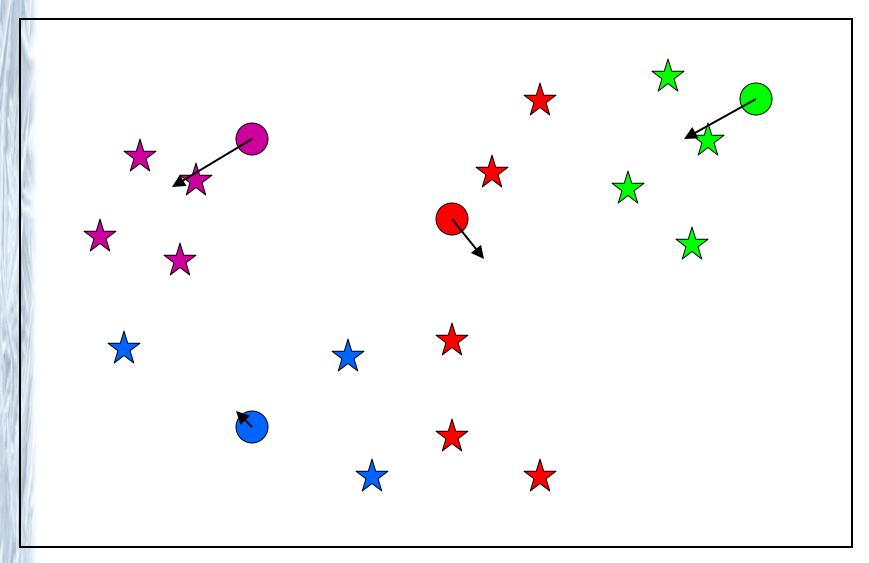
k-Means Clustering

- 1. Choose *k* cluster centers (randomly pick k data points as center, or randomly distribute in space)
- 2. Assign each pattern to the closest cluster center
- 3. Recompute the cluster centers using the current cluster memberships (moving centers may change memberships)
- 4. If a convergence criterion is not met, goto step 2

Convergence criterion:

- no reassignment of patterns
- minimal change in cluster center

k-Means Clustering



k-Means Variations

- What if too many/not enough clusters?
- After some convergence:
 - any cluster with too large a distance between members is split
 - any clusters too close together are combined
 - any cluster not corresponding to any points is moved
 - thresholds decided empirically

An Incremental Clustering Algorithm

- 1. Assign first data point to a cluster
- 2. Consider next data point. Either assign data point to an existing cluster or create a new cluster. Assignment to cluster based on threshold
- 3. Repeat step 2 until all points are clustered

Useful for efficient clustering

Clustering Summary

- Unsupervised learning method
 - generation of "classes"
- Based on similarity/distance measure
 - Manhattan, Euclidean, Minkowski, Mahalanobis, etc.
 - distance matrix
 - threshold distance matrix
- Hierarchical representation
 - hierarchical dendogram
- Agglomerative methods
 - single link
 - complete link (clique)

Clustering Summary

- Partitional method
 - representing clusters
 - centroids and "error"
 - k-Means clustering
 - combining/splitting k-Means
- Incremental clustering
 - one pass clustering