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Bayesian Learning
• Bayes Theorem
• MAP, ML hypotheses
• MAP learners
• Minimum description length principle
• Bayes optimal classifier
• Naïve Bayes learner
• Bayesian belief networks
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Two Roles for Bayesian Methods
Provide practical learning algorithms:
• Naïve Bayes learning
• Bayesian belief network learning
• Combine prior knowledge (prior probabilities) 

with observed data
Requires prior probabilities:
• Provides useful conceptual framework:
• Provides “gold standard” for evaluating other 

learning algorithms
• Additional insight into Occam’s razor
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Bayes Theorem

• P(h) = prior probability of hypothesis h
• P(D) = prior probability of training data D
• P(h|D) = probability of h given D
• P(D|h) = probability of D given h
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Choosing Hypotheses

Generally want the most probable hypothesis given the 
training data

Maximum a posteriori hypothesis hMAP:

If we assume P(hi)=P(hj) then can further simplify, and 
choose the Maximum likelihood (ML) hypothesis
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Bayes Theorem
Does patient have cancer or not?
A patient takes a lab test and the result comes back positive.  

The test returns a correct positive result in only 98% of the 
cases in which the disease is actually present, and a correct 
negative result in only 97% of the cases in which the 
disease is not present.  Furthermore, 0.8% of the entire 
population have this cancer.

P(cancer) = P(¬cancer) =
P(+|cancer) = P(-|cancer) =
P(+|¬cancer) = P(-|¬cancer) =

P(cancer|+) =
P(¬cancer|+) = 
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Some Formulas for Probabilities
• Product rule: probability P(A ∧ B) of a 

conjunction of two events A and B:
P(A ∧ B) = P(A|B)P(B) = P(B|A)P(A)

• Sum rule: probability of disjunction of two events 
A and B:
P(A ∨ B) = P(A) + P(B) - P(A ∧ B)

• Theorem of total probability: if events A1,…,An
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Brute Force MAP Hypothesis Learner
1. For each hypothesis h in H, calculate the posterior 

probability

2. Output the hypothesis hMAP with the highest 
posterior probability
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Relation to Concept Learning
Consider our usual concept learning task
• instance space X, hypothesis space H, training 

examples D
• consider the FindS learning algorithm (outputs 

most specific hypothesis from the version space 
VSH,D)

What would Bayes rule produce as the MAP 
hypothesis?

Does FindS output a MAP hypothesis? 
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Relation to Concept Learning
Assume fixed set of instances (x1,…,xm)
Assume D is the set of classifications
D = (c(x1),…,c(xm))
Choose P(D|h):
• P(D|h) = 1 if h consistent with D
• P(D|h) = 0 otherwise
Choose P(h) to be uniform distribution
• P(h) = 1/|H| for all h in H
Then





=
otherwise0

 with consistent is  if
)|(

1 Dh
DhP H,DVS

CS 8751 ML & KDD Bayesian Methods 10

Learning a Real Valued Function
f

hML

y

x

e

Consider any real-valued target function f
Training examples (xi,di), where di is noisy training value
• di = f(xi) + ei
• ei is random variable (noise) drawn independently for each 

xi according to some Gaussian distribution with mean = 0
Then the maximum likelihood hypothesis hML is the one that
minimizes the sum of squared errors:
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Learning a Real Valued Function
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Minimum Description Length Principle
Occam’s razor: prefer the shortest hypothesis
MDL: prefer the hypothesis h that minimizes

where LC(x) is the description length of x under 
encoding C

Example:
• H = decision trees, D = training data labels
• LC1(h) is # bits to describe tree h
• LC2(D|h) is #bits to describe D given h

– Note LC2 (D|h) = 0 if examples classified perfectly by 
h.  Need only describe exceptions

• Hence hMDL trades off tree size for training errors
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Minimum Description Length Principle

Interesting fact from information theory:
The optimal (shortest expected length) code for 

an event with probability p is log2p bits.
So interpret (1):
-log2P(h) is the length of h under optimal code
-log2P(D|h) is length of D given h in optimal code
→ prefer the hypothesis that minimizes

length(h)+length(misclassifications)
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Bayes Optimal Classifier
Bayes optimal classification

Example:
P(h1|D)=.4, P(-|h1)=0, P(+|h1)=1 
P(h2|D)=.3, P(-|h2)=1, P(+|h2)=0
P(h3|D)=.3, P(-|h3)=1, P(+|h3)=0

therefore
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Gibbs Classifier
Bayes optimal classifier provides best result, but can be 

expensive if many hypotheses.
Gibbs algorithm:
1. Choose one hypothesis at random, according to P(h|D)
2. Use this to classify new instance
Surprising fact: assume target concepts are drawn at random 

from H according to priors on H.  Then:
E[errorGibbs] ≤ 2E[errorBayesOptimal]

Suppose correct, uniform prior distribution over H, then
• Pick any hypothesis from VS, with uniform probability
• Its expected error no worse than twice Bayes optimal
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Naïve Bayes Classifier
Along with decision trees, neural networks, nearest 

neighor, one of the most practical learning 
methods.

When to use
• Moderate or large training set available
• Attributes that describe instances are conditionally 

independent given classification
Successful applications:
• Diagnosis
• Classifying text documents
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Naïve Bayes Classifier
Assume target function f: X→V, where each instance 

x described by attributed (a1,a2,…,an).
Most probable value of f(x) is:

Naïve Bayes assumption:

which gives
Naïve Bayes classifier: 
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Naïve Bayes Algorithm
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Naïve Bayes Example
Consider CoolCar again and new instance
(Color=Blue,Type=SUV,Doors=2,Tires=WhiteW)

Want to compute 

P(+)*P(Blue|+)*P(SUV|+)*P(2|+)*P(WhiteW|+)=
5/14 * 1/5 * 2/5 * 4/5 * 3/5 = 0.0137

P(-)*P(Blue|-)*P(SUV|-)*P(2|-)*P(WhiteW|-)=
9/14 * 3/9 * 4/9 * 3/9 * 3/9 = 0.0106
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Naïve Bayes Subtleties
1. Conditional independence assumption is often 

violated

• … but it works surprisingly well anyway.  Note 
that you do not need estimated posteriors to be 
correct; need only that

• see Domingos & Pazzani (1996) for analysis
• Naïve Bayes posteriors often unrealistically close 

to 1 or 0

)|()|,...,,( 21 j
i

ijn vaPvaaaP ∏=

)|,...,()(maxarg)|(ˆ)(ˆmaxarg 1 jnjVvj
i

ijVv
vaaPvPvaPvP

jj ∈∈
=∏

CS 8751 ML & KDD Bayesian Methods 21

Naïve Bayes Subtleties
2. What if none of the training instances with target 

value vj have attribute value ai?  Then

Typical solution is Bayesian estimate for

• n is number of training examples for which v=vj
• nc is number of examples for which v=vj and a=ai
• p is prior estimate for
• m is weight given to prior (i.e., number of 

“virtual” examples)
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Bayesian Belief Networks
Interesting because
• Naïve Bayes assumption of conditional 

independence is too restrictive
• But it is intractable without some such 

assumptions…
• Bayesian belief networks describe conditional 

independence among subsets of variables
• allows combing prior knowledge about 

(in)dependence among variables with observed 
training data

• (also called Bayes Nets)
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Conditional Independence
Definition: X is conditionally independent of Y

given Z if the probability distribution governing X
is independent of the value of Y given the value of 
Z; that is, if

more compactly we write
P(X|Y,Z) = P(X|Z)

Example: Thunder is conditionally independent of 
Rain given Lightning
P(Thunder|Rain,Lightning)=P(Thunder|Lightning)

Naïve Bayes uses conditional ind. to justify
P(X,Y|Z)=P(X|Y,Z)P(Y|Z)

=P(X|Z)P(Y|Z)

)|(),|(),,( kikjikji zZxXPzZyYxXPzyx ======∀
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Bayesian Belief Network
Storm

Lightning Campfire

BusTourGroup

Thunder ForestFire

S,B S,¬B ¬S,B ¬S,¬B
C  0.4 0.1  0.8  0.2
¬C  0.6 0.9  0.2  0.8

Campfire

Network represents a set of conditional independence assumptions
• Each node is asserted to be conditionally independent of its

nondescendants, given its immediate predecessors
• Directed acyclic graph
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Bayesian Belief Network
• Represents joint probability distribution over all 

variables
• e.g., P(Storm,BusTourGroup,…,ForestFire)
• in general,

where Parents(Yi) denotes immediate 
predecessors of Yi in graph

• so, joint distribution is fully defined by graph, plus 
the P(yi|Parents(Yi))
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Inference in Bayesian Networks
How can one infer the (probabilities of) values of 

one or more network variables, given observed 
values of others?

• Bayes net contains all information needed
• If only one variable with unknown value, easy to 

infer it
• In general case, problem is NP hard
In practice, can succeed in many cases
• Exact inference methods work well for some 

network structures
• Monte Carlo methods “simulate” the network 

randomly to calculate approximate solutions
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Learning of Bayesian Networks
Several variants of this learning task
• Network structure might be known or unknown
• Training examples might provide values of all

network variables, or just some
If structure known and observe all variables
• Then it is easy as training a Naïve Bayes classifier
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Learning Bayes Net
Suppose structure known, variables partially 

observable
e.g., observe ForestFire, Storm, BusTourGroup, 

Thunder, but not Lightning, Campfire, …
• Similar to training neural network with hidden 

units
• In fact, can learn network conditional probability 

tables using gradient ascent!
• Converge to network h that (locally) maximizes 

P(D|h)
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Gradient Ascent for Bayes Nets
Let wijk denote one entry in the conditional 

probability table for variable Yi in the network
wijk =P(Yi=yij|Parents(Yi)=the list uik of values)
e.g., if Yi = Campfire, then uik might be (Storm=T, 

BusTourGroup=F)
Perform gradient ascent by repeatedly
1. Update all wijk using training data D

2. Then renormalize the wijk to assure
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Summary of Bayes Belief Networks
• Combine prior knowledge with observed data
• Impact of prior knowledge (when correct!) is to 

lower the sample complexity
• Active research area

– Extend from Boolean to real-valued variables
– Parameterized distributions instead of tables
– Extend to first-order instead of propositional 

systems
– More effective inference methods


