

The EBL Hypothesis

By understanding why an example is a member of a concept, can learn the essential properties of the concept

Trade-off

the need to collect many examples

for

the ability to "explain" single examples (a "domain" theory)

CS 8751 ML & KDD

Explanation-Based Learning

Learning by Generalizing Explanations

Given

- Goal (e.g., some predicate calculus statement)
- Situation Description (facts)
- Domain Theory (inference rules)
- Operationality Criterion

Use problem solver to justify, using the *rules*, the *goal* in terms of the *facts*.

Generalize the justification as much as possible.

The *operationality criterion* states which other terms can appear in the generalized result.

CS 8751 ML & KDD

Explanation-Based Learning

Standard Approach to EBL An Explanation (detailed proof of goal) goal facts After Learning (go directly from facts to solution): goal CS 8751 ML & KDD Explanation-Based Learning 4

Unification-Based Generalization

- An explanation is an inter-connected collection of "pieces" of knowledge (inference rules, rewrite rules, etc.)
- These "rules" are connected using *unification*, as in Prolog
- The generalization task is to compute the most general unifier that allows the "knowledge pieces" to be connected together as generally as possible

CS 8751 ML & KDD

Explanation-Based Learning

The EGGS Algorithm (Mooney, 1986)

```
bindings = { }

FOR EVERY equality between
  patterns P and Q in explanation DO
    bindings = unify(P,Q,bindings)

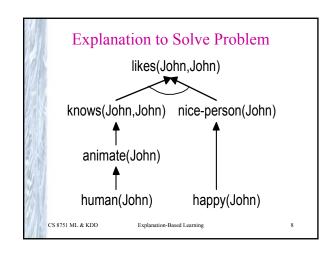
FOR EVERY pattern P DO
  P = substitute-in-values(P,bindings)

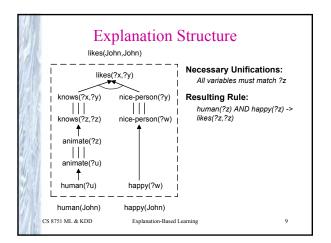
Collect leaf nodes and the goal node
```

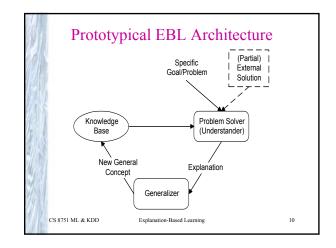
CS 8751 ML & KDD

Explanation-Based Learning

Sample EBL Problem Initial Domain Theory knows(?x,?y) AND nice-person(?y) -> likes(?x,?y) animate(?z) -> knows(?z,?z) human(?u) -> animate(?u) friendly(?v) -> nice-person(?v) happy(?w) -> nice-person(?w) Specific Example Given human(John) AND happy(John) AND male(John), show that likes(John,John)







Imperfect Theories and EBL Incomplete Theory Problem Cannot build explanations of specific problems because of missing knowledge Intractable Theory Problem Have enough knowledge, but not enough computer time to build specific explanation Inconsistent Theory Problem Can derive inconsistent results from a theory (e.g., because of default rules)

Some Complications Inconsistencies and Incompleteness may be due to abstractions and assumptions that make a theory tractable. Inconsistencies may arise from missing knowledge (incompleteness). e.g., making the closed-world assumption

Issues with Imperfect Theories

Detecting imperfections

- "broken" explanations (missing clause)
- contradiction detection (proving P and not P)
- multiple explanations (but expected!)
- resources exceeded

Correcting imperfections

experimentation - motivated by failure type (explanationbased)

make approximations/assumptions - assume something is

CS 8751 ML & KDD

Explanation-Based Learning

17

EBL as Operationalization (Speedup Learning)

Assuming a complete problem solver and unlimited time, EBL already knows how to recognize all the concepts it will know.

What it learns is how to make its knowledge operational (Mostow).

Is this learning?

Isn't 99% of human learning of this type?

CS 8751 ML & KDD

Explanation-Based Learning

14

Knowledge-Level Learning

Newell, Dietterich

Knowledge closure

 all things that can be inferred from a collection of rules and facts

"Pure" EBL only learns how to solve faster, not how to solve problems previously insoluble.

Inductive learners make inductive leaps and hence can solve more after learning.

What about considering resource-limits (e.g., time) on problem solving?

CS 8751 ML & KDD

Explanation-Based Learning

Negative Effects of Speedup Learning

The "Utility Problem"

Time wasted checking "promising" rules

rules that almost match waste more time than obviously irrelevant ones

General, broadly-applicable rules mask more efficient special cases

CS 8751 ML & KDD

planation-Based Learning

Defining Utility (Minton)

Utility = (AvgSav * ApplFreq) - AvgMatchCost where

AvgSav - time saved when rule used

ApplFreq - probability rule succeeds given its preconditions tested

AvgMatchCost - cost of checking rule's preconditions

Rules with negative utility are discarded

- estimated on training data

CS 8751 ML & KDD Explanation-Based Learning

Learning for Search-Based Planners

Two options

- Save composite collections of primitive operators, called MACROPS
 - explanation turned into rule added to knowledge base
- 2. Have domain theory about your problem solver use explicit declarative representation

build explanations about how problems were solved

- which choices lead to failure, success, etc.
- learn evaluation functions (prefer pursuing certain operations in certain situations)

18

CS 8751 ML & KDD Explanation-Based Learning

Reasons for Control Rules

- Improve search efficiency (prevent going down "blind alleys")
- To improve solution quality (don't necessarily want first solution found via depth-first search)
- To lead problem solver down seemingly unpromising paths
 - overcome default heuristics designed to keep problem solver from being overly combinatoric

CS 8751 ML & KDD

Explanation-Based Learning

...

23

PRODIGY - Learning Control Knowledge

Minton, 1989

Have domain theory about specific problem *and* another about the problem solver itself

Choices to be made during problem solving:

- which node in current search tree to expand
- which sub-goal of overall goal to explore
- relevant operator to apply
- binding of variables to operators

Control rules can

- lead to the choice/rejection of a candidate
- lead to a partial ordering of candidates (preferences)

CS 8751 ML & KDD

Explanation-Based Learning

SOAR

Rosenbloom, Laird, and Newell, 1986

Production system that chunks productions via EBL

Production system - forward chaining rule system for problem solving

Key Idea: IMPASSES

- occur when system cannot decide which rule to apply
- solution to impasse generalized into new rule

CS 8751 ML & KDD

Explanation-Based Learning

Summary of SOAR

A "Production System" with three parts:

- · A general-purpose forward search procedure
- A collection of operator-selection rules that help decide which operator to apply
- A look-ahead search procedure invoked when at an impasse

When the impasse occurs, can learn new rules to add to collection of operator-selection rules

CS 8751 ML & KDD

Explanation-Based Learning

22

24

Reasoning by Analogy

- Create a description of a situation with a known solution and then use that solution in structurally similar situations
- Problem: a doctor can use a beam of radiation to destroy a cancer, but at the high amount needed, it will also destroy the healthy tissue in any path it follows
- Idea: find a similar (some how) situation and use it to create a solution

CS 8751 ML & KDD Explanation-Based Learning

Reasoning by Analogy Story

- Similar story: a general needs to send his troops to a particular city for a battle by a particular time, but there is no road wide enough to accommodate all of his troops in the time remaining (even though there are several roads)
- Solution: break up the troops into smaller groups and send each group down a different road
- How to solve the radiation situation??

CS 8751 ML & KDD Explanation-Based Learning