
Exercise 11 – Time series. Cross-correlation. Autocorrelation. Detection of cycles. 
 

1. Open the file ‘Tsup.mat’. This file contains the hourly air temperatures at two 
locations (termed ‘stations’) on Lake Superior.  
        Station 1: Lat 47.08 Lon -90.73  
        Station 4: Lat 47.18 Lon -87.22  
You can use Google Maps to visualize the locations. The record starts on 
midnight January 1, 2000 and continues until the fall of 2006. The NaN values 
that were present in the original series were removed by replacing them by the 
preceding temperature measurements (yes, this will generate some artifacts). The 
columns of the dataset are 1) time in hours; 2) temperature at the first station 3) 
temperature at the second station. 

 
Look at the data. What does it tell you? For example, is there a relationship between 
the temperatures at the two locations? If you know the temperature at one location, 
with what accuracy can you predict the temperature at the other? What are the trends 
in the data? Can they be quantified? Are there any cycles and what causes them? Is it 
possible to determine their periods?  

 
2. Copy the data into separate variables and plot the data 

 
t=Tsup(:,1); 
T1=Tsup(:,2); 
T2=Tsup(:,3); 
plot(t,T1,t,T2) 

 
Notice that the two series are noisy but obviously correlated because of the annual 
temperature cycles. 
 
Another good way to visualize the correlation in two series is to plot them against 
each other: 
 

plot(T1,T2,’o’) 
 
Note that this relies on the fact that both series have identical time vectors. 
Compute the correlation coefficient 
 
 corrcoef(T1,T2) 
 

3. In most time series analyses, it is necessary to remove any linear trends that may 
be present in the data. The first thing to do is to check if any significant trends 
exist in our series. For example: 

 
fit(t,T1,’poly1’) 
fit(t,T2,’poly1’) 
 



You may also use the ‘polytool’ command or any linear fit commands that you 
know. Is the linear trend (the slope) in your data significant? 
 
Let’s remove the linear trend. For that, we will subtract the linear trend line from 
the data. Define the two variables for the slope and intercept that you found with 
the ‘fit’ tool for the first series (T1): 
 
 slope1 = ______    % enter the found value for slope here 
 intercept1 =  _____ % enter the found value for intercept here 
 
Subtract the fit line from the series T1 and make it into a new series S1 
 
 S1=T1 – (slope1*t + intercept1); 
 
Repeat for the second series (T2) and save it into a new series S2. Plot the series 
to make sure they look ok. The fact that we subtracted not only the slopes but also 
the intercepts means that we also set the means of the series to zero, which is fine 
for our purposes. 
 

4. First, let’s look at the autocorrelations. This is the correlation of the series with 
itself. It can be calculated using the same command ‘xcorr’ but with a single 
argument: 

 
c=xcorr(S1); plot(c) 
 
We will discuss the output in a moment. The function ‘xcorr’ calculates 
correlations for both positive and negative lags (τ), so the lag=zero is plotted in 
the middle of the graph. To mark the position of the zero lag, we can, for 
example, draw a vertical line: 
 
 hold on 
 d=max(size(c)); 
 mc=max(c); 
 plot([d/2  d/2] , [-mc  mc], 'r') 
 
For zero lag, the correlation obviously has to be perfect, with the correlation 

coefficient =1. By default, however, the function ‘xcorr’ does not normalize its output, so 
the y-axis of your graph does have units (what are they?). Moreover, as it shifts the series 
to calculate the correlations at larger lags, it progressively runs out of points to base the 
calculation on. As a result, the correlations decrease for large lags. This is called a ‘bias’. 
One way to alleviate the problem is to specify additional options to xcorr: 

 
  hold off   
 c=xcorr(S1,’unbiased’); plot(c) 

 



The result is better but the correlations now increase at the edges because of the increased 
role of statistical fluctuations for a small number of data points. Another option lets you 
force the correlation coefficient at zero lag to be 1: 
 
  c=xcorr(S1,’coeff’); plot(c) 
 
So what does this autocorrelation function tell you? The fact that the autocorrelation 
function is periodic means that shifting the function relative to itself by a certain lag τ 
produces a function that is similar to the original. In other words, your function is 
periodic. The lag τ at which the maximum occurs is the function’s period.  
 

5. Now let’s look at the cross correlations between series T1 and T2: 
 

c=xcorr(S1,S2,’unbiased’); plot(c) 
hold on 
mc=150;                 % to plot a center line  
plot([d/2  d/2] , [-mc  mc], 'r') 
 
There is obviously correlation between the two series, with a period 

corresponding to one year. What would you expect to see if the temperature at the second 
station followed the temperature at the first station with a delay of several days? 

 
6. So far, we looked only at the large scale annual signals. But are there correlations 

in the daily temperature fluctuations? To check this, we need to remove the 
annual signal from the series. One way to do this is to subtract the running mean. 

 
hold off 
ws=24;   % size of averaging window is 1 day 
rmean1=filter(ones(1,ws)/ws,1,S1); 
Q1 = S1 - rmean1; 
plot(t,Q1) 
 
rmean2=filter(ones(1,ws)/ws,1,S2); 
Q2 = S2 – rmean2; 
plot(t,Q2) 
 
The newly created series Q1 and Q2 have the annual trend removed from them 
and contain mostly the high-frequency temperature fluctuations. Now let’s see if 
these fluctuations are correlated: 
 
c=xcorr(Q1,Q2,’unbiased’); plot(c) 
 
What can you say about the nature of these high-frequency temperature 
variations? Investigate the autocorrelations for Q1 and Q2 and experiment with 
the size of the averaging window ‘ws’. (To automate the process, you may copy 
the above sequence of commands in a .m file and run them for a number of values 



of ‘ws’.) Look closely at the area around the peak in the autocorrelation function; 
see if there is any characteristic time scale (perhaps, hours?) on which the 
temperature fluctuations are still correlated and not random. 


