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ABSTRACT
Unsupervised word sense discrimination relies on the idea
that words that occur in similar contexts will have simi-
lar meanings. These techniques cluster multiple contexts in
which an ambiguous word occurs, and the number of clus-
ters discovered indicates the number of senses in which the
ambiguous word is used. One important distinction among
these methods is the underlying means of representing the
contexts to be clustered. This paper compares the efficacy
of first–order methods that directly represent the features
that occur in a context with several second–order methods
that use a more indirect representation. The experiments in
this paper show that second order methods that use word by
word co–occurrence matrices result in the highest accuracy
and most robust word sense discrimination. These experi-
ments were conducted on MedLine abstracts that contained
pseudo–words created by conflating together pairs of MeSH
preferred terms to create new ambiguous words. The experi-
ments were carried out with SenseClusters, a freely available
open source software package.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Natural Language Process-
ing; I.2.7 [Natural Language Processing]: Text Analysis;
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Experimentation

Keywords
natural language processing, semantic ambiguity, word sense
discrimination

1. INTRODUCTION
Semantic ambiguity is a persistent problem in Natural

Language Processing of general English and in the biomedi-
cal domain. Many abbreviations, words, terms, and phrases
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have multiple possible meanings, and NLP systems are fre-
quently called upon to resolve these ambiguities in some
way.

There are two general ways to frame this problem. The
first and arguably more common is as word sense disam-
biguation. This is the process of assigning a sense to a
word, where that sense is found in a dictionary or other pre–
determined sense inventory. For example, given The patient
complained of cold hands, a word sense disambiguation sys-
tem might be asked to select between two different senses of
cold: the sensation produced by low temperatures or a mild
viral infection involving the nose and respiratory passages
(but not the lungs). Word sense disambiguation is frequently
approached as a problem in supervised learning, where man-
ually annotated examples of the word in different senses are
used to train a classifier. This can also be approached us-
ing rule based systems, which again have knowledge of the
underlying sense inventory.

The second way of framing the problem of ambiguity is
as word sense discrimination. In this case there is no pre–
existing sense inventory, and the task is to determine if the
multiple occurrences of a word in different contexts are being
used in different senses. If so, the task is to group together
the occurrences of the word that are being used in the same
sense. Typically this is approached as a unsupervised learn-
ing problem, where multiple occurrences of the same word
in different contexts are clustered, and each resulting cluster
is viewed as representing a distinct meaning of that word.

For example, a user might have retrieved 300 sentences
that include the word cold. Some of those sentences may be
about the temperature, while others might be about the ill-
ness. Rather than trying to identify a precise set of possible
senses and then choose from among those, word sense dis-
crimination would separate these sentences into some num-
ber of clusters that correspond with the various underlying
meanings of cold without necessarily labeling those clusters
with a definition from a dictionary or sense inventory. In
many practical settings such as Web Search and Informa-
tion Retrieval, the goal really is to organize information for
presentation to a user, who can then examine each cluster
to see which seems most appropriate for the task at hand.

Word Sense Disambiguation is limited by the coverage of
the underlying dictionary or other lexical resource that de-
fines which senses a system can recognize. In general the
coverage of dictionaries in terms of vocabulary and senses
is far from complete, and in many domains there is new
terminology and new usages of words, acronyms and abbre-
viations that emerge that will not be recorded in dictionaries



for some time. As a result Word Sense Disambiguation sys-
tems run the risk of not being terribly flexible or portable,
and they may make distinctions in meanings that are either
not relevant or are not appropriate for certain tasks.

Given the limitations of word sense disambiguation, this
paper instead focuses on word sense discrimination. It com-
pares different representations of the contexts that contain
an ambiguous term that are particularly suitable for unsu-
pervised clustering approaches. This paper presents the re-
sults of a number of word sense discrimination experiments
using contexts from MedLine abstracts. Since the focus of
the paper is on the underlying representation, many other
settings are held constant across the methods, so as to make
the effect of the different representation methods clear.

In order to perform a rigorous and extensive experimental
evaluation, thirty ambiguous terms were created artificially
by finding all occurrences of two distinct terms, and then
replacing those occurrences with a new ambiguous pseudo–
word. For example, one of the pairs of terms that was con-
flated was colon and leg. All occurrences of these two words
(and their morphological variants) were converted into an
ambiguous term xyz-ID, where ID is an integer that uniquely
identifies the conflated pair. The contexts containing this
new term were discriminated using various methods as im-
plemented in the freely available open source software pack-
age SenseClusters.

This paper continues with a discussion of how contexts
can be represented in an unsupervised clustering problem,
and focuses on first and second–order lexical features. It
then goes into a more detailed discussion of these represen-
tations and the word sense discrimination methods used in
this paper. The method by which new ambiguous words
were created for experiments is described, and then the ex-
perimental results are presented. This paper features results
from six different unsupervised clustering methods applied
to 30 different words using three different methods for deter-
mining the total number of clusters; a total of 540 different
experiments. The paper concludes with an analysis of these
results, which includes suggestions for future directions.

2. BACKGROUND
An unsupervised word sense discrimination system takes

as input N contexts that each contain a single occurrence of
a particular ambiguous word1. The word to be discriminated
is known as the target word. These contexts are grouped
into k clusters, where each cluster includes contexts that
are similar to each other and the number of clusters k is au-
tomatically determined. Each resulting cluster is presumed
to correspond to a sense of the ambiguous word, based on
the assumption that instances of a word that occur in similar
contexts are being used with similar meanings. These meth-
ods are said to be unsupervised because they do not use any
manually annotated training data, and they are not guided
by any underlying knowledge source or human intervention.
They simply cluster contexts based on the similarity of the
text based on information found within that text.

Given the limited information available to unsupervised
methods, the underlying representation of the contexts to

1While this paper generally uses word to refer to the ob-
ject of discrimination, it should be understood that this is
meant to also include terms and phrases interchangeably. In
fact the experiments in this paper include many terms and
phrases as well as individual words

be clustered is paramount. As such a number of different
techniques have been developed (cf., [2]). The most well
known and perhaps most obvious method is to take a bag
of words approach and let each word in the contexts to be
clustered represent a feature, and then contexts that share
the most words between them will be judged the most sim-
ilar, usually via the application of some kind of clustering
algorithm (cf., [4]). This is referred to as a first–order rep-
resentation (o1) since contexts are represented directly by
the words that occur in them. It is also possible to part of
speech tag, parse, or otherwise process the text and use the
resulting syntactic or linguistic information as a kind of fea-
ture, but the underlying representation remains unchanged.

Put very simply, first–order methods establish the simi-
larity between contexts by finding those contexts that share
the largest number of words between them. This can work
reasonably well given fairly large amounts of text that in-
cludes a certain amount of specialized terminology (as would
be found in MedLine abstracts, for example), but can run
into difficulties with smaller amounts of text and/or noisier
text.

Second–order methods are an alternative that represent
the words in a context to be clustered based on some indirect
(second–order) information. Many of these methods find
their origins in Latent Semantic Indexing ([3]), which was
originally applied to problems in Information Retrieval. In
fact it also has a long history of use in the biomedical domain
(cf., [1]).

The general idea of LSI is to represent the words in a
collection of contexts in a word by context matrix2, where
words that occur in approximately the same set of docu-
ments are judged to be similar to each other. Next, this
matrix is reduced (usually) via Singular Value Decomposi-
tion (SVD) which is thought to reduce the noise in the data
and make relationships between underlying concepts more
clear. The overall goal of LSI is to make it possible to recog-
nize that two very different words might be similar (because
they are used in many of the same documents), and thereby
improve the ability of a system to provide a user with doc-
uments relevant to their query. A user searching for kidney
disease may well find contexts (e.g., web page snippets or
extracts from journal abstracts) that mention renal failure
of considerable interest.

Schütze [24] developed an extension to LSI that made it
possible to carry out word sense discrimination. Rather than
creating a term by document matrix, he introduced the idea
of using a word by word co–occurrence matrix to represent
words. Words that occur with many of the same other words
will have similar word vectors in this co–occurrence matrix,
and will be judged to be similar. In Schütze’s approach, the
data from which the co–occurrence matrix is derived can
come from some external source, or it could come from the
contexts that are being clustered. This paper takes the latter
approach, although SenseClusters conveniently supports the
use of external data. Regardless of where the co–occurrence
data comes from, each word in a context to be clustered
is replaced by a vector that represents the words that co-
occur with it. The vectors for all the words in a context are
averaged together to create a single vector that becomes the
second–order word by word co–occurrence representation of
that context. After all of the contexts have been represented

2Note that in the LSI literature this is often referred to as
a term by document matrix.



in this way, the clustering algorithm discovers how many
different clusters exist in this data, which will reveal the
number of senses and which contexts are used in which sense.

Another second–order method that is closely related to
LSI is Latent Semantic Analysis (LSA) [12]. Like LSI, LSA
uses a word by context representation that is reduced by
SVD in order to recognize similar words and concepts. In
many respects the main difference between LSI and LSA is
in the domain of intended use. LSI is often regarded as an
Information Retrieval method, while LSA is often used in ap-
plications and experiments relating to psychology, cognitive
science, and education (cf., [13]). The underlying method-
ologies are very similar. While it was not originally applied
to word sense discrimination, LSA was recently evaluated on
this problem [14]. It has also been employed in the biomed-
ical domain in order to discover missing word senses in a
sense inventory [6].

LSI, LSA, and Schütze’s approach all build a second–order
representation of words or terms. The key step in these
methods (that makes them second–order) is that the words
in the contexts to be clustered are replaced by something
else. In the case of LSI and LSA, each word is replaced by
a vector that shows which other contexts in which it has
occurred. In Schütze’s method each word is replaced by a
vector which represents the other words with which it has
occurred. Once the words are replaced by the appropriate
kind of vector, all of the vectors representing a single context
are averaged together to create a single vector representation
of that context, and then all the contexts are input to the
clustering algorithm. They key motivation behind second–
order approaches is to recognize similarity between different
words. LSA and LSI rely on the idea that words that occur
in approximately the contexts are similar, while Schütze’s
method is based on the idea that words that occur with
with approximately the same set of other words should be
considered similar. No doubt there is truth in both points
of view.

For example, aspirin and ibuprofen are different words
and would be treated as being just as different as aspirin
and blood by a first–order method. However, they have sim-
ilar meanings and could reasonably be used in contexts with
some of the same other words. Suppose that pain, inflamma-
tion and body aches all occur in contexts with both aspirin
and ibuprofen. As such these would be considered as second–
order co–occurrences of aspirin and ibuprofen and would be
used as replacements (intuitively speaking) for those words
in Schütze’s second–order method. A similar argument can
be made for a word by context approach like LSA or LSI,
which would recognize that aspirin and ibuprofen are being
used in many of the same contexts, and therefore should be
judged to be somewhat similar.

All of first and second–order approaches described above
have been implemented in the SenseClusters package, and
numerous variations on the original approaches have been
developed. These are described in greater detail in a number
of publications (e.g., [21], [22]). All of the experiments in
this paper are conducted using SenseClusters.

The key distinctions in the different methods that are eval-
uated in this paper are the underlying representation of the
contexts to be clustered. There are three basic schemes that
will be described in more detail in the following section:
first–order methods that recognizes features that are shared
between contexts (o1), the LSI/LSA second–order methods

that uses word by context matrices to represent words in
context (o2LSA), and Schütze’s second–order methods that
use word by word co–occurrence matrices to represent words
in context (o2SC).

3. METHODOLOGY
This section describes the details of six word sense discrim-

ination methods used in the experiments described later in
this paper. The overall framework of each approach is the
same - they each accept as input N contexts, where each
context includes a particular ambiguous target word. The
goal of word sense discrimination is to divide those N con-
texts into k clusters, where k is automatically determined
and is presumed to represent the number of senses in which
the target word is being used in these contexts.

The focus of this study is on the underlying representa-
tion of the contexts to be clustered. As such various other
settings for these methods have been held constant across
the experiment. This is not because they are not important
or are not potentially interesting, it is simply the goal of
this paper to shed light on the consequences of choosing one
representation scheme over another. Factors that are held
constant across all methods include the clustering algorithm
employed, the types of features used and the methods for
identifying them, and the methods used for identifying the
number of clusters in the data.

3.1 Lexical Features
All six methods use lexical features that are found in the

contexts to be clustered. Note that in general it would be
possible to obtain information about lexical features from
other corpora, and if the number of contexts to be clustered
is relatively small this is a very necessary and desirable step
to take. However, in these experiments the number of con-
texts was sufficiently large to simply rely on the contexts
themselves to provide this data. Further note that there
was no syntactic or grammatical processing of these con-
texts, nor was stemming or any other kind of normalization
performed. As such these methods follow a very knowledge–
lean minimum–resource approach which makes them easy to
port to new domains and even new languages. However, it is
also clear that syntactic information can be used to good ad-
vantage with unsupervised word sense discrimination meth-
ods (cf., [5]).

3.2 Clustering
All of these methods cluster the contexts with the method

of Repeated Bisections using the I2 criterion function and
the cosine similarity measure (cf., [9]). Repeated Bisections
starts clustering with all the contexts in one cluster, and re-
peatedly partitions them (in two) in order to optimize the
I2 criterion function. This bisection is performed by using
the standard k-means clustering with k=2. The I2 crite-
rion function finds the average pairwise similarity between
each context in the cluster and the centroid using the cosine
measure, and sums these values across all the clusters to find
the overall criterion function. This is done for all possible
number of clusters from N to 1, where N is the number of
contexts.

3.3 Cluster Stopping
Thereafter the optimal number of clusters is automati-

cally identified by finding the point at which the I2 criterion



function reaches a plateau and stops improving. This de-
cision is made by three different cluster stopping methods:
PK2, PK3, and the Adapted Gap Statistic. Note that all of
these methods require that the data be clustered N times,
where the number of clusters k ranges from the total num-
ber of contexts N to 1. Then these measures examine vari-
ous characteristics of these different solutions to determine
which value of k is the most appropriate choice.

PK2 is based on Hartigan’s approach [8], and takes the ra-
tio of whatever criterion function is being used (in this case
I2) over successive pairs of values of k. As this ratio ap-
proaches 1 the quality of the clustering solution is no longer
improving, so clustering will stop when this ratio is within
one standard deviation of 1. PK3 is based on three k values,
and computes the ratio of twice the criterion function at k

with the sum of the criterion functions at k−1 and k+1. As
this ratio approaches 1 the quality of the clustering solution
is not improving, so again we stop if that ratio is within one
standard deviation of 1. The Adapted Gap Statistic is based
on the Gap Statistic [25], and creates a reference sample of
the observed data as if it were only composed of noise (and
had no clusters within it). Then, the criterion function for
different values of k in the actual observed data is compared
with the criterion function for these values of k on the noisy
reference sample, in order to identify the value of k where
there is the greatest divergence between the observed data
and the noisy data. This value of k represents the clustering
of the observed data that is least like noise, and is therefore
the value selected for k.

Additional details on these cluster stopping methods are
available in various sources (e.g., [10], [19], [20]).

3.4 First-Order Context Vectors
First–order context vectors directly represent the features

that occur in the contexts to be clustered. In these exper-
iments those features are individual words (unigrams) and
bigrams. Any unigram that occurs five or more times in the
contexts to be clustered is included as a feature, as long as
that word does not appear in a stoplist of approximately
200 common English words that consists of function words
such as conjunctions, determiners, articles, prepositions, etc.
This same list of stop words is used in all other experiments
as well. This method is referred to as o1-uni in later discus-
sion and tables. This is very similar to the traditional bag of
words representation that has been used in text classification
for many years.

Another first–order approach is taken where the features
are bigrams, which are ordered pairs of words that occur to-
gether more often than would be expected by chance. The
order of the words does matter, so elbow brace and brace
elbow are treated as distinct features. The words that make
up a bigram may be separated by up to 8 intervening words
in order to allow for certain long–distance dependencies to
be discovered. For example, smoker and cough may appear
in relatively close proximity to each other, as in as a smoker
he tends to cough and the smoker had a bad cough. All oc-
currences of smoker and cough that appear in that order
and with at most 8 intervening words between them will be
counted as occurrences of the bigram smoker cough. How-
ever, if either of the words in the bigram are a stopword then
it will not be considered as a feature.

The statistical significance of the bigrams that occur five
or more times is measured by Fisher’s Exact Text (left–

sided), and any pair of words with a p–value greater than or
equal to 0.99 is included as a feature [18]. This definition of
bigram and the technique for identifying those that should
be treated as features is used in all other experiments except
o1-uni (which is the only method that selects strictly based
on frequency). This method is referred to as o1-big in later
discussion and tables.

After the set of features are determined (be they bigrams
or unigrams) then each context to be clustered is represented
as a binary vector that indicates whether or not a particular
feature has occurred in that context. This is what is meant
by saying that first–order methods directly represent the
features that occur in the contexts to be clustered. These
vectors are the input to the clustering algorithm, so contexts
that share multiple words or bigrams as features are likely
to be clustered together. The underlying premise of this
approach is that contexts that include a particular target
word and that share a number of other words are likely to
be using that target word in the same sense. This is certainly
a reasonable assumption, although it is also true that there
is usually more than one way to express the same idea, and
first order methods rely on a fairly high degree of repetition
among key discriminating words.

3.5 Second-Order Word by Word
The use of second–order word by word co–occurrences is

characteristic of the word sense discrimination approach de-
fined by Schütze [24], and has been implemented in a mod-
ified form in SenseClusters.

The second–order method that relies on word by word
co-occurrence matrices identifies bigrams in the contexts to
be clustered in exactly the same way as o1-big. However,
after the bigram features are identified, they are used to
define a co–occurrence matrix where the rows represent the
first words in the bigram, and the columns represent the
second. Since bigrams are order–dependent this matrix is
asymmetric. This version of this method is referred to as
o2SC in subsequent discussion and tables.

Since the co–occurrence matrix is large and sparse, one
variation of o2SC is to reduce the number of columns down
to 300 via Singular Value Decomposition (SVD). This pro-
cess can be viewed (very intuitively and somewhat impre-
cisely) as a kind of clustering performed on the columns,
which in effect combines together some of the second words
in the bigrams when they occur with the same first words.
The efficacy of SVD remains an open question, and a num-
ber of researchers have reported limited or slightly negative
effects (e.g., [21], [27]). In order to study this question fur-
ther, this paper also includes a version of o2SC where SVD
has been applied to the word by word co–occurrence matrix
prior to building the second order representation. This vari-
ation is referred to as o2SC-SVD in subsequent discussion
and tables.

Whether SVD is performed or not, the contexts to be clus-
tered are represented by simply checking each word in the
context to see if there is a corresponding row entry in the
co–occurrence matrix. If there is, then that row is used to re-
place (in effect) the word in the context. After all the words
in the context have been replaced by their corresponding
row from the co–occurrence matrix (if one exists) then all of
these word vectors are averaged together to create a second
order representation of the context to be clustered. There
is one averaged vector created per context to be clustered,



and these averaged vectors become the input to the cluster-
ing algorithm. At this point the clustering and prediction
of the number of clusters proceeds identically to all of the
other methods.

The premise of this approach is that there are many words
that can be used to express the same idea, and that a first–
order method which relies on finding the exact same words
in different contexts to assess similarity will potentially miss
a great deal that lurks just below the surface of the text. A
pair of words that co–occur with the same set of other words
(their second–order co-occurrences) but not each other will
still be considered similar. Given this it is more likely that
similar contexts can be identified, and that the different
senses in which an ambiguous target word is being used will
be more subtly observed.

3.6 Second-Order Word by Context
The creation of a second–order representation based on

word by context co–occurrences (or term by document more
generally) is characteristic of both Latent Semantic Indexing
(LSI) [3] and Latent Semantic Analysis (LSA) [12].

In this framework the features are simply words (uni-
grams) that occur 5 or more times in the contexts to be
clustered, and that aren’t included on the stoplist. This is
identical to o1-uni. Then, the contexts are represented in
exactly the same way as they are in o1-uni, where each con-
text is converted to a vector that shows which words occur
in it. The resulting matrix (which is given as input to the
clustering algorithm in o1-uni) is not used for clustering in
this method, but is instead transposed to become a word by
context co–occurrence matrix. This matrix shows in which
contexts each word occurs.

At this point each word in a context to be clustered is
replaced by the corresponding row in the word by context
co–occurrence matrix (if one exists), and then these word
vectors are all averaged together to create a second–order
representation of the contexts. This is the same representa-
tion technique as used in o2SC, but instead of using a word
by word co–occurrence matrix as an underlying representa-
tion this method uses a word by context co-occurrence ma-
trix. This is referred to as o2LSA in subsequent discussion
and tables.

As is the case with o2SC, the word by context co–occurrence
matrix is very large and spare, and so Singular Value De-
composition can be performed prior to substituting the rows
from the matrix for the words in the contexts to be clustered.
This variation of the method is referred to as o2LSA-SVD
in later discussion and tables.

4. EXPERIMENTAL DATA
In order to evaluate the effectiveness of unsupervised word

sense discrimination, there must be some gold standard avail-
able with which to compare. Such a gold standard would
include a large number of contexts manually grouped into
appropriate clusters that could be compared with the auto-
matically created clusters.

While it would be possible to manually create a gold
standard for such tasks, in general this is a rather time–
consuming and error–prone process. While there is a gold
standard dataset of 50 ambiguous words available for the
biomedical domain ([26]), it has a fairly limited number
of contexts per word (100) which make it particularly well
suited for supervised learning evaluation. However, it should

be noted that a preliminary study of unsupervised word
sense discrimination methods was made on this data set by
[23]. This work used variants of the first–order unigram and
second–order word by word co–occurrence representations
described here, but without the benefit of automatic cluster
stopping.

Given the lack of any other gold standard data, a collec-
tion of ambiguous pseudo–words was automatically created
for use in this paper via the following steps:

1. Randomly select 60 terms from the set of MESH pre-
ferred terms, and pair them randomly.

2. For each pair of terms, select all the contexts in the
MedLine abstracts that contain one or both of those
terms (and their simple morphological variants). Let
each occurrence of one of these terms be surrounded by
up to 50 words before and after, so that each context
consists of 100 words where the target word is located
(approximately) in the middle.

3. For each pair of preferred terms create a new ambigu-
ous pseudo–word by replacing all occurrences of the
two preferred terms with a single ambiguous term xyz-
ID, where ID is a unique integer associated with the
new term.

4. For each new ambiguous term, randomly select a sam-
ple of N contexts such that each underlying ”sense”
occurs exactly half the time.

5. This process results in 30 samples of contexts, where
each sample is made up of 100 word–long contexts with
an ambiguous pseudo–word in the middle. This am-
biguous word has 2 possible ”meanings”, where each
meaning occurs in 50% of the contexts.

The data created for these experiments following the pro-
cess outlined above is shown in Table 4. Note that in this
table simple regular expressions have been used to show the
morphological variants allowed for the terms.

The use of pseudo–words in word sense disambiguation
and discrimination is generally accepted as a reasonable (al-
though possibly limiting) alternative to manually annotated
data. For example, Schütze used pseudo–words as a part of
his original word sense discrimination study [24], and they
have also been employed in various unsupervised name dis-
crimination and email categorization studies (e.g., [11], [21]).

Various authors have shown that pseudo–word data can
be very effectively used, assuming that the pseudo–words
are selected from more restricted sets of categories of rela-
tively monosemous words (e.g., [7], [17]). The danger of an
unrestricted selection of pseudo–words is that two relatively
ambiguous words (e.g., line and cold) could be conflated,
in which case the underlying meanings of the pseudo–words
themselves can confound the discrimination process.

In general these experiments assume that the MeSH pre-
ferred terms are relatively unambiguous. While this is not
always the case, it appears to be true often enough to result
in meaningful results which we review in the sections that
follow.

5. EXPERIMENTAL RESULTS
Tables 2, 3, and 4 show the results of applying the six

methods of word sense discrimination previously discussed



Table 1: Terms Conflated to Create Ambiguity : each occurs in 50% of contexts
Term1 Term2 ID contexts
colon(s|ic)? legs? 1 10,000
patient care osteoporosis 2 10,000
blood transfusions? ventricular functions? 3 10,000
randomized controlled trials? haplotypes? 4 10,000
vasodilations? bronchoalveolar lavages? 5 10,000
toluenes? thinking 6 10,000
duodenal ulcers? clonidines? 7 10,000
myomas? appetites? 8 5,000
glycolipids? prenatal care 9 10,000
thoracic surger(y|ies) cytogenetic analys(is|es) 10 5,000
measles virus(es)? tissue extracts? 11 5,000
lanthanums? curiums? 12 5,000
adrenal insufficienc(y|ies) (recurrent )?laryngeal nerves? 13 5,000
glucokinases? xeroderma pigmentosums? 14 5,000
polyvinyl alcohols? polyribosomes? 15 2,000
urethral strictures? resistance training 16 5,000
cholesterol esters? premature births? 17 2,000
odontoblasts? anurias? 18 2,000
brain infarctions? health resources? 19 2,000
turbinates? aphids? 20 5,000
cochlear nerves? (protein )?kinases? inhibitors? 21 2,000
hematemesis gemfibrozils? 22 2,000
nectars? work of breathing 23 2,000
fusidic acids? dicarboxylic acids? 24 2,000
brucellas? potassium iodides? 25 1,000
walkers? primidones? 26 2,000
hepatitis( b)? flavoproteins? 27 5,000
prognathisms? plant roots? 28 1,000
plant proteins? (persistent )?vegetative states? 29 2,000
prophages? porphyrias? 30 5,000

on the 30 conflated pseudo–words. Each table shows the
results of a particular cluster stopping method, which pre-
dicts the optimal number of clusters (senses) per word. Note
that to save space the conflated word pairs are referred to
by their ID number in the results tables.

There are two figures of merit shown in these tables - the
first is the SenseClusters F-score, which is a percentage that
ranges from 0 to 100. A score of 100 means that the clusters
created correspond exactly to the gold standard solution.
The F-score will assign each discovered cluster to a gold
standard cluster on a 1 to 1 basis, and then determine how
many contexts found in the discovered cluster are also found
in the gold standard cluster to which it has been assigned.
The F-score is computed by dividing the number of con-
texts that are found to be in corresponding discovered and
gold standard clusters by the total number of contexts for
that ambiguous term. The assignment of discovered to gold
standard clusters is made such that the overall agreement is
maximized. In fact this method of evaluation reduces to an
instance of the Hungarian Algorithm, which SenseClusters
solves by using the Munkres algorithm [16].

Note that the F-score penalizes methods that predict the
wrong number of clusters rather harshly, since the 1:1 align-
ment of discovered clusters to gold standard clusters will re-
sult in a number of discovered or gold clusters being ignored
(if the the number of discovered clusters diverges signifi-
cantly from the gold standard). The second figure of merit
is the value of k, which is the number of clusters predicted

by the method. The number of senses in the gold standard
data is always 2 for these experiments. In addition to show-
ing these values word by word, the overall average (AVG)
and standard deviation (STD) of the F-score and predicted
k is presented as well.

Note that if all of the contexts are assigned to just one
cluster, then the effect of this evaluation technique is to
assign an F-score equal to the percentage of contexts that
belong to the most frequent sense in the gold standard. In
the experimental data in this paper each ambiguous word
has two possible senses, where each sense occurs an equal
number of times, so the F-score that results when assigning
all contexts to one cluster is 50.

6. DISCUSSION
Tables 2, 3, and 4 show that there is considerable varia-

tion in the results from these experiments. Since the main
difference among the methods is the underlying representa-
tion of the contexts, this reveals a few general points that
can be made about these techniques.

6.1 SVD reduces accuracy of results
Perhaps the most noticeable result is a negative one. Sin-

gular Value Decomposition (SVD) appeared to do consid-
erable harm whenever it was applied. Regardless of the
the cluster stopping method, adding SVD to the o2SC and
o2LSA method resulted in a significant decrease in the over-
all F-score average. For example, for the PK2 stopping



Table 2: F-Score and predicted k by method using PK2 cluster stopping
ID o1-big k o1-uni k o2SC k o2SC-SVD k o2LSA k o2LSA-SVD k
1 61.43 6 46.84 4 55.14 3 53.54 2 55.87 3 65.66 2
2 70.65 5 83.27 3 93.44 2 66.08 3 93.69 2 54.62 2
3 70.05 4 81.75 3 96.72 2 62.53 2 79.17 3 42.17 9
4 65.45 5 88.53 3 98.77 2 63.68 3 96.24 2 43.67 11
5 69.88 4 71.99 4 96.10 2 29.17 13 95.33 2 73.80 3
6 67.61 6 75.13 5 94.84 2 61.26 2 91.57 2 43.29 10
7 69.63 4 65.85 4 91.65 2 68.46 3 90.16 2 78.97 2
8 66.43 4 88.16 3 89.38 2 36.36 12 75.61 2 81.92 2
9 67.60 5 87.81 3 99.54 2 92.37 2 98.99 2 79.29 3
10 89.07 3 83.46 3 95.44 2 66.68 2 91.26 2 44.56 8
11 61.71 5 78.82 3 92.36 2 72.58 2 91.56 2 35.46 10
12 46.04 5 46.97 9 61.45 4 44.57 3 49.40 6 64.00 2
13 75.31 4 80.15 3 85.40 2 31.89 11 81.36 2 45.07 6
14 87.36 3 97.76 2 95.98 2 89.44 2 96.04 2 78.52 2
15 57.63 7 61.04 6 86.57 3 44.26 8 53.01 8 46.84 6
16 87.17 3 98.60 2 99.10 2 43.55 9 98.08 2 47.04 8
17 56.95 7 62.35 5 97.70 2 52.01 6 98.30 2 53.75 5
18 65.39 6 89.06 3 99.10 2 50.70 6 96.40 2 58.24 7
19 46.45 8 51.00 5 84.40 2 48.36 7 81.45 2 50.00 1
20 74.31 4 92.70 2 94.30 2 86.92 2 88.90 2 88.60 2
21 62.08 6 69.02 4 95.20 2 49.05 7 93.80 2 60.65 5
22 43.46 8 67.84 4 97.10 2 51.76 7 61.73 5 51.19 4
23 46.97 8 97.25 2 98.15 2 71.61 7 96.20 2 57.42 5
24 53.55 7 58.13 5 77.73 3 46.07 6 56.43 7 48.76 6
25 42.11 10 41.60 11 61.01 4 52.51 3 59.53 4 27.52 14
26 60.41 7 62.44 5 93.40 2 52.23 6 64.13 7 69.59 5
27 85.91 3 96.98 2 96.70 2 86.02 2 95.40 2 44.50 8
28 58.22 8 62.45 6 98.80 2 71.85 3 99.50 2 67.43 4
29 45.07 8 71.04 4 97.55 2 41.40 8 97.65 2 54.99 6
30 85.03 3 99.16 2 99.06 2 38.84 10 98.16 2 79.32 2

AVG 64.63 5.53 75.24 4.00 90.74 2.23 57.52 5.30 84.16 2.90 57.89 5.33
STD 13.52 3.52 16.65 2.00 11.67 0.56 16.75 3.32 16.16 1.76 15.24 3.23

measure the addition of SVD to o2SC dropped the over-
all F-score from 90.74 to 57.52, and increased the average
predicted number of senses from 2.23 to 5.30.

It seems that rather than merging and smoothing redun-
dant information (as SVD is intended to do) it apparently
lost important levels of detail while reducing the dimension-
ality of the co-occurrence matrices. This is perhaps most
dramatically illustrated by the results with the Adapted Gap
Statistic (Table 4), where for o2-SVD and o2-LSA nearly ev-
ery word was predicted to have just one sense. This shows
rather clearly that there was a fairly extreme and nega-
tive loss of information after performing SVD. It is signifi-
cant that both word by word (o2SC) and word by context
(o2LSA) methods were affected in very similar ways, sug-
gesting that the issue is more with SVD than with a partic-
ular representation scheme.

6.2 First-order unigrams effective but brittle
The use of bigrams as a first–order feature was not partic-

ularly effective (o1-big), and in all cases the use of first–order
unigrams (o1-uni) resulted in higher F-scores and predicted
values of k closer to the actual value of 2. The motivation
for using bigrams rather than unigrams is that they are po-
tentially less ambiguous and more precise than unigrams.
However, they are also more sparse, and it would appear

that collectively they did not capture as much information
as did the unigrams.

The o1-uni method was somewhat brittle however, in that
the F-score showed relatively high variance across the dif-
ferent cluster stopping methods. For PK2 the F-score was
75.24, for PK3 it was 84.24, and for Gap it was 87.50. On the
other hand, o2SC had F-scores of 90.74, 90.68 and 88.57 for
those three cluster stopping methods, suggesting that it is
somewhat more robust. o2LSA had F-scores of 84.16, 87.43
and 83.93, which is again relatively consistent and robust.

The variance of the first–order F-scores is not surprising
since the methods o1-uni and o1-big require that at least
some of the same words must be observed in the contexts
to be clustered in order to be regarded as similar. Second–
order methods are somewhat less susceptible to variations
in vocabulary in the contexts since words are represented
by the words with which they co–occur (o2SC) or by the
contexts in which they occur (o2LSA).

However, the first order method with unigrams when com-
bined with the Adapted Gap Statistic was extremely effec-
tive in identifying the correct number of clusters (see Table
4). Over the 30 words it predicted that 26 of them had 2
clusters and that 4 of them had 1. The overall average of
predicted k was 1.87, which was the closest of all the meth-
ods to actual k of 2, and the standard deviation for predicted
k was the lowest (0.34) of all the methods. This combination



Table 3: F-Score and predicted k by method using PK3 cluster stopping
ID o1-big k o1-uni k o2SC k o2SC-SVD k o2LSA k o2LSA-SVD k
1 72.15 3 57.64 3 52.05 4 53.54 2 55.87 3 65.66 2
2 81.92 4 94.05 2 93.44 2 66.08 3 93.69 2 54.62 2
3 84.76 3 81.75 3 96.72 2 62.53 2 79.17 3 67.70 4
4 70.30 4 97.41 2 98.77 2 63.68 3 96.24 2 58.65 2
5 69.88 4 86.79 3 96.10 2 56.43 3 86.97 3 73.80 3
6 67.88 3 95.09 2 94.84 2 61.26 2 91.57 2 71.65 2
7 69.63 4 90.99 2 91.65 2 68.46 3 90.16 2 78.97 2
8 66.43 4 92.40 2 89.38 2 50.00 1 75.61 2 81.92 2
9 87.97 3 99.13 2 99.54 2 92.37 2 98.99 2 79.29 3
10 76.95 4 92.74 2 95.44 2 66.68 2 91.26 2 73.00 2
11 83.73 3 56.74 7 92.36 2 72.58 2 91.56 2 58.39 3
12 36.92 7 54.55 7 54.43 8 44.57 3 56.22 3 64.00 2
13 89.86 3 80.15 3 85.40 2 58.36 2 81.36 2 51.24 3
14 99.19 2 97.76 2 95.98 2 89.44 2 96.04 2 78.52 2
15 57.63 7 73.82 4 86.57 3 70.74 3 68.59 5 65.71 3
16 98.97 2 98.60 2 99.10 2 67.93 5 98.08 2 85.74 2
17 82.87 4 62.35 5 97.70 2 74.85 2 98.30 2 53.26 3
18 90.38 3 98.30 2 99.10 2 56.28 3 96.40 2 58.31 4
19 56.33 6 76.77 3 84.40 2 70.24 3 81.45 2 50.00 1
20 80.29 3 92.70 2 94.30 2 86.92 2 88.90 2 88.60 2
21 63.33 5 95.60 2 95.20 2 88.80 2 93.80 2 50.00 1
22 84.58 3 67.84 4 97.10 2 73.70 2 96.40 2 50.00 1
23 68.77 4 97.25 2 98.15 2 89.90 2 96.20 2 65.37 3
24 66.88 4 58.13 5 77.73 3 59.71 4 84.95 2 78.25 2
25 69.57 4 74.21 4 69.49 3 57.30 2 59.53 4 57.50 2
26 71.32 5 87.85 3 93.40 2 53.64 4 85.00 2 75.99 3
27 85.91 3 96.98 2 96.70 2 86.02 2 95.40 2 82.82 2
28 75.76 3 99.50 2 98.80 2 83.40 2 99.50 2 67.43 4
29 67.28 6 71.04 4 97.55 2 84.75 2 97.65 2 69.80 2
30 74.87 2 99.16 2 99.06 2 72.92 2 98.16 2 79.32 2

AVG 75.08 3.83 84.24 3.00 90.68 2.37 69.44 2.47 87.43 2.30 67.85 2.37
STD 12.86 1.29 14.86 1.41 12.04 1.14 13.14 0.81 12.54 0.69 11.47 0.79

accurate prediction of k combined with small standard de-
viation is very appealing, and certainly the reasons for this
performance should be studied further.

6.3 Conflated words not perfect but useful
The experimental data in this study was created by con-

flating together two terms to create a new ambiguous term.
The terms to be conflated were randomly selected from the
MeSH preferred terms, but in general it would be fair to
say that these new ambiguous words represent fairly coarse
distinctions in meaning and that all of the conflated pairs
probably result in ambiguous terms of comparable levels of
difficulty. There are no extremely fine grained distinctions in
the experimental data, although there are some potentially
confusable pairs, for example plant protein and persistent
vegetative state (ID-29).

As a refinement to this method of creating experimen-
tal data, it would be very useful to generate pairs of terms
to conflate that are known to be semantically similar (and
therefore representing more subtle distinctions in meaning).
This could be done using information gleaned from a the-
saurus or via automatic methods of identifying similar and
related concepts (cf., [15]). One possible mechanism for do-
ing this would be to randomly select pairs of terms and then
measure their semantic similarity or relatedness automati-
cally. Thereafter, chose a certain number of pairs from dif-

ferent ranges of similarity to conflate in order to create a
data set of ambiguous words with varying degrees of diffi-
culty.

Also note that the size of these experiments was in a some-
what restricted range from 1,000 to 10,000 contexts per am-
biguous word. This seems to be a reasonable number of
contexts and is representative of many practical problems.
However, there will be different challenges posed with either
smaller or larger amounts of data, and certainly those should
be studied in future. Finally, all of the conflated–ambiguous
terms in this study had only two possible meanings. Future
experiments should certainly increase the amount of ambi-
guity in order to extend these results.

Despite these limitations, the experimental data in this
study was in the end randomly created, and there was no
tuning of the system to particular words. In general the
methods that performed well did so across a range of words
and varying numbers of contexts, which gives some confi-
dence that the results will generalize to other settings.

6.4 Second-order methods robust, accurate
The second order methods o2SC and o2LSA both per-

formed quite accurately, and generally had consistent re-
sults regardless of the cluster stopping method employed.
o2SC was overall more accurate than o2LSA, although the
differences were slight. The main advantage of creating



Table 4: F-Score and predicted k by method using Adapted Gap Statistic cluster stopping
ID o1-big k o1-uni k o2SC k o2SC-SVD k o2LSA k o2LSA-SVD k
1 49.23 11 52.13 2 52.05 4 50.00 1 55.87 3 50.00 1
2 81.92 4 94.05 2 93.44 2 50.00 1 75.50 4 50.00 1
3 97.31 2 90.80 2 96.72 2 50.00 1 79.17 3 50.00 1
4 41.10 12 97.41 2 98.77 2 50.00 1 87.61 3 50.00 1
5 51.82 9 96.31 2 86.35 3 50.00 1 86.97 3 50.00 1
6 49.62 13 50.00 1 94.84 2 50.00 1 91.57 2 50.00 1
7 46.03 9 90.99 2 79.26 3 50.00 1 81.53 3 50.00 1
8 62.93 6 92.40 2 89.38 2 50.00 1 75.61 2 50.00 1
9 57.37 10 99.13 2 99.54 2 50.00 1 92.36 3 50.00 1
10 89.07 3 92.74 2 95.44 2 50.00 1 80.35 3 50.00 1
11 61.71 5 92.18 2 92.36 2 50.00 1 91.56 2 50.00 1
12 46.24 1 50.00 1 50.00 1 50.00 1 50.00 1 50.00 1
13 50.96 9 85.76 2 83.19 3 50.00 1 75.35 3 50.00 1
14 74.33 4 97.76 2 88.97 3 50.00 1 85.41 3 50.00 1
15 51.39 9 95.95 2 86.57 3 50.00 1 83.79 3 50.00 1
16 98.97 2 98.60 2 99.10 2 50.00 1 98.08 2 50.00 1
17 56.95 7 98.60 2 97.70 2 50.00 1 98.30 2 50.00 1
18 98.52 2 98.30 2 99.10 2 50.00 1 96.40 2 50.00 1
19 92.41 2 84.95 2 76.41 3 50.00 1 81.45 2 50.00 1
20 43.78 10 92.70 2 94.30 2 50.00 1 88.90 2 50.00 1
21 62.08 6 95.60 2 95.20 2 50.00 1 93.80 2 50.00 1
22 67.04 4 97.00 2 97.10 2 50.00 1 96.40 2 50.00 1
23 98.52 2 97.25 2 98.15 2 50.00 1 96.20 2 50.00 1
24 66.88 4 90.90 2 77.73 3 50.00 1 84.95 2 50.00 1
25 56.17 5 50.00 1 50.00 1 50.00 1 50.00 1 50.00 1
26 60.41 7 50.00 1 93.40 2 50.00 1 50.00 1 50.00 1
27 46.20 12 96.98 2 96.70 2 50.00 1 95.40 2 50.00 1
28 88.98 2 99.50 2 98.80 2 50.00 1 99.50 2 50.00 1
29 67.28 6 97.80 2 97.55 2 50.00 1 97.65 2 50.00 1
30 50.15 9 99.16 2 99.06 2 50.00 1 98.16 2 36.93 11

AVG 65.51 6.23 87.50 1.87 88.57 2.23 50.00 1.00 83.93 2.30 49.56 1.33
STD 18.55 3.52 16.97 0.34 14.20 0.62 0.00 0.00 14.69 0.69 2.35 1.80

second–order representations of context from word by word
co–occurrence matrices may be that this is more fine grained
information that is a word by context representation. In or-
der for words to be considered co–occurring they must ap-
pear within 8 positions of each other, whereas in a word by
context representation the information captured is about the
contexts that a word occurs in, not the words with which it
occurs.

In these experiments the contexts were created from Med-
Line abstracts and are therefore relatively short and very
focused. In less clearly defined texts (as might be found
by searching the web for a given keyword) it may be that
a word by word representation would be able to pick out
distinctions that a word by context might miss due to the
larger amount of noise that would likely be found in other
sources of data.

7. CONCLUSIONS
This paper presents an experimental comparison of first

and second–order methods of representing contexts that in-
clude an ambiguous word that is to be discriminated. This
comparison includes first–order context vectors, and second–
order representations that are created using word by word
or word by context co-occurrence matrices. Of these ap-
proaches, it is shown that second–order methods have clear
advantages over first–order methods, and that second order

methods based on word by word co-occurrences result in
slightly better accuracy than those based on word by con-
text co-occurrences. These results are generally consistent
regardless of what method is used to identify the number of
clusters. It is also shown that Singular Value Decomposi-
tion (SVD) has a negative effect when used on the word by
context and word by word matrices.
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