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Abstract

Measures of semantic relatedness have many practical applications including word sense disam-

biguation. This thesis presents an algorithm for all words sense disambiguation that incorporates mea-

sures of semantic relatedness.

A variety of measures of semantic relatedness have been proposed. These are founded on a number

of different principles. There are measures that rely on path length in a taxonomy, information content,

finding lexical chains, and comparing the similarity of dictionary glosses. The strengths and weaknesses

of the measures are discussed in detail. A method of handling multiple inheritance in a taxonomy is

developed.

A method of word sense disambiguation that employs measures of semantic relatedness for an all

words task is formulated. This system will assign a sense to every content word in a text that is found in

our dictionary (WordNet). The algorithm is unique because it does not require training and is capable of

disambiguating arbitrary text.

The algorithm has been evaluated using an assortment of sense-tagged corpora, including SemCor

and the test data for SENSEVAL-2 and SENSEVAL-3. The experimental results are compared to the

performance of other existing all words sense disambiguation systems. The results are very promising,

and the system presented in this thesis is highly competitive with other systems.
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1 Introduction

In Natural Language Processing, it is often useful to quantify how related two words are. More precisely,

we often wish to measure the relatedness of two word senses, where a word sense is a specific meaning of

a particular word. For example, the word ball has several senses, including a round object used in games, a

formal dance, and a pitch in baseball that is not a strike. A precise method for quantifying how similar two

word senses are is called a measure of semantic relatedness.

Measures of semantic relatedness have been used for a variety of practical applications. Hirst and St-

Onge [5] proposed a measure of semantic relatedness and used it for detecting and correcting malapropisms.

They hypothesized that a spell checker could be enhanced to identify words that are spelled correctly but are

used incorrectly. They theorized that each word in a sentences should be semantically related to the nearby

words. If a word is unrelated to its neighbors, then it is likely to be a malapropism.

They proposed an algorithm for detecting malapropisms where if a word is unrelated to the other words in

a sentence, a search is undertaken for similarly spelled words. If one of those similarly spelled words is

semantically related to the nearby words, then the algorithm suggests that word as a replacement for the

original word, which may be a malapropism.

Another application of measures of semantic relatedness is word sense disambiguation, which is the process

of determining which sense of a word is the intended sense in a particular context. For example, in the

sentence, “John took his wife to the annual ball”, a human can easily understand which sense of ball is

intended. It would often be useful if software could also detect which sense of ball was intended. Word

sense disambiguation involves picking the intended sense of a word for a pre-defined set of words, which is

typically a machine-readable dictionary, such as WordNet.

Lesk [8] presented a method of word sense disambiguation that compared the definitions of the ambiguous

word to the definitions of the words near it. This method has formed the basis of the Adapted Lesk measure

of semantic relatedness discussed in the next section and has also influenced the development of the word

sense disambiguation algorithm discussed later in this thesis.

Closely related to word sense disambiguation is word sense discrimination, where the uses of a word in

different contexts are grouped together with the intent of grouping similar or synonymous uses of the word
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in the same sets. Word sense discrimination is different than word sense disambiguation because there is no

pre-defined set of word senses in word sense discrimination.

Word sense disambiguation itself has many practical applications. One of the earliest motivations for study-

ing word sense disambiguation was machine translation. It is often the case that different meanings of a

single word in one language can correspond to multiple words in a different language. For example, the

English word port can be translated as several different words in French depending upon its use. The sense

of port that is somewhat synonymous with harbor is port in French, an opening in a ship is sabord, the left

side of a vessel or aircraft is bâbord, and the red dessert wine is Porto.

Word sense disambiguation is itself often divided into distinct tasks. Sometimes, a word sense disambigua-

tion method is concerned only with disambiguating a single ambiguous word in a given context. Other

methods attempt to disambiguate all the words in a text. This thesis focuses on “all words” disambiguation

but also highlights “target word” methods that have been influential in the algorithm presented here.

One popular approach to word sense disambiguation is to train a supervised machine learning algorithm

(such as a Naive Bayes Classifier, or a Decision Tree) on a set of training data. A supervised machine

learning approach has some significant disadvantages. A supervised approach requires a significant amount

of manually annotated training data. Often, some training data is required for every word. Since there is

relatively little manually annotated data available, and training data is difficult to create, supervised machine

learning is often not practical for an all words disambiguation system.

The approach in this thesis is considerably different than the supervised machine learning approach. The

algorithm presented is not based directly upon statistics. Instead, it uses measures of semantic relatedness

and does not require any training data and uses WordNet as a knowledge base.

This thesis presents a number of contributions to existing work in measuring semantic relatedness and word

sense disambiguation.

1. This thesis compares and contrasts various methods of measuring semantic relatedness by discussing

the strengths and weaknesses of the different measures.

2. A method of handling of multiple inheritance by semantic similarity measures based on WordNet

is developed. Previous discussions of semantic similarity measures have given little treatment to

3



multiple inheritance handling.

3. A novel method of “all words” disambiguation that employs measures of semantic relatedness is

presented.

4. Freely available1word sense disambiguation software, WordNet::SenseRelate::AllWords, has been

developed for this thesis. The experimental results presented in this thesis were obtained with this

software, and the experiments can easily be re-created.

5. The word sense disambiguation algorithm is evaluated using nearly all relevant sense tagged corpora.

1The software is distributed free of charge and may be modified and/or redistributed under the terms of the GNU General Public

License. The software is available from http://senserelate.sourceforge.net.
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2 Measuring Semantic Relatedness

2.1 WordNet

WordNet [4] is a machine readable dictionary created at the Cognitive Science Laboratory at Princeton

University. Unlike most dictionaries, WordNet contains only open-class words (nouns, verbs, adjectives, and

adverbs). WordNet does not contain closed-class words such as pronouns, conjunctions, and prepositions.

WordNet groups sets of synonymous word senses into synonym sets or synsets. A word sense is a particular

meaning of a word. For example, the word walk has several meanings; as a noun, it can refer to traveling by

foot or it can refer to a base on balls in baseball. A synset contains one or more synonymous word senses.

For example, {base on balls, walk, pass} is the synset for the second sense of the noun walk. The synset is

the basic organizational unit in WordNet.

Each synset has a gloss (definition) associated with it. The gloss for the synset {base on balls, walk, pass} is

“(baseball) an advance to first base by a batter who receives four balls.” Many synsets also have an example

in addition to the gloss. For example, “he worked the pitcher for a base on balls.”

The sense numbers in WordNet are assigned according to the frequency with which the word sense occurs

in the SemCor corpus (i.e., the first sense of a word is usually more common than the second). Word

senses that do not appear in SemCor are assigned sense numbers in a random order. SemCor is discussed in

Section 4. Word senses can be represented as strings in a specific format, using the word form, a single letter

representing the part of speech, and a sense number, such as walk#n#2, which represents the second sense

of the noun walk. The part of speech letter is n for nouns, v for verbs, a for adjectives, and r for adverbs.

Terms consisting of more than one word are often joined by underscores instead of spaces. The synset in

the previous paragraph can be written as {base on balls#n#1, walk#n#2, pass#n#1}.

Version 2.0 of WordNet contains approximately 152,000 unique words that together have a total of about

203,000 unique senses. These word senses are organized into over 115,000 different synsets. Of these

synsets, almost 80,000 are noun synsets, 13,500 are verb synsets, 18,500 are adjective synsets, and 3,700

are adverb synsets.

WordNet defines relations between synsets and relations between word senses. A relation between synsets is

a semantic relation, and a relation between word senses is a lexical relation. The distinction between lexical
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relations and semantic relations is somewhat subtle. The difference is that lexical relations are relations

between members of two different synsets, but semantic relations are relations between two whole synsets.

Some examples of semantic relations are the hypernym, hyponym, meronym, and holonym relations. A

hypernym of a synset is a generalization of that synset. The hyponym relation is the inverse of the hypernym

relation. The hypernym and hyponym relations represent is-a relationships between nouns. If A and B are

nouns, and an A is a B, then A is a hyponym of B and B is a hypernym of A. For example, {organism,

being} is the hypernym of {plant, flora} because a plant is an organism (cf. Figure 1). Since the hyponym

relation is the opposite of the hypernym relation, {plant, flora} is a hyponym of {organism, being}.

{entity}

{object, physical object}

{agent} {living thing, animate thing} {land, dry land, earth}

{coastal plain}{island}{organism, being}

{causal agent, cause}

{plant, flora}{person}

Figure 1: WordNet hypernyms

For verbs, the term troponym is used instead of hyponym. A troponym is a way of doing something else.

For example, {soar} is a troponym of {fly, wing} because soaring is a way of flying (see Figure 2). WordNet

still uses the term hypernym as the inverse of tryponym; therefore, {fly, wing} is a hyponym of {soar}.

{walk} {ride}

{hover}{soar}

{travel, go, move, locomote}

{fly, wing}

Figure 2: WordNet troponyms

A meronym is a word that is a part of whole (e.g., {wheel} is a meronym of {wheeled vehicle}). The inverse

is the holonym relation (e.g., {wheeled vehicle} is a holonym of {wheel}).
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The hypernym, hyponym, and troponym relations are particularly interesting. These relations form is-a

taxonomies with the noun and verb synsets. These taxonomies have a tree-like structure. All noun and verb

synsets belong to at least one taxonomy. Because multiple inheritance is allowed, some synsets belong to

more than one taxonomy. There is no unique root node that links all noun synsets together or all verb synsets

together. Instead, there are multiple taxonomies. In WordNet 2.0, there are nine noun taxonomies and 554

verb taxonomies.

Some examples of lexical relations are the antonym relation and the derived form relation. For example,

the antonym of the tenth sense of the noun light (light#n#10) in WordNet is the first sense of the noun dark

(dark#n#1). The synset to which light#n#10 belongs is {light#n#10, lighting#n#1}. Clearly it makes sense

that light#n#10 is an antonym of dark#n#1, but lighting#n#1 is not a antonym of dark#n#1; therefore, the

antonym relation needs to be a lexical relation, not a semantic relation because the relationship is between

individual word senses, not whole synsets.

2.2 Path Length Similarity Measures

When the concepts expressed by two word senses are alike, the senses are said to be semantically sim-

ilar. A measure of semantic similarity quantifies the degree of alikeness of two word senses. Word-

Net::Similarity [15] is a set of Perl modules that implements a number of measures of semantic similarity.

The measures implemented are discussed in detail in the remainder of this section. The measures can be

divided roughly into two groups: measures of semantic similarity and measures of semantic relatedness.

Semantic similarity measures typically work with noun-noun or verb-verb pairs since only nouns and verbs

can be easily classified into is-a hierarchies. Semantic relatedness measures generally work on all open class

parts of speech because they are not limited to is-a hierarchies.

In an is-a taxonomy such as WordNet, a simple approach to measuring similarity is to treat the taxonomy

as an undirected graph and use the distance in terms of path length between the two synsets as a measure of

similarity. The greater the distance between two synsets, the less similar they are. In Figure 1, for example,

the synset {island} is closer to {land, dryland, earth} than it is to {living thing, animate thing}, so it is

considered to be more similar to {land, dryland, earth} than {living thing, animate thing}.

The distance between two synsets can be measured using either edge counting or node counting. In edge

7



counting, the distance between two synsets is the number of links between the two synsets. In node counting,

the distance between two synsets is the number of nodes along the shortest path between the two synsets,

including the end nodes representing the two synsets. In Figure 1, the distance between {plant, flora} and

{living thing, animate thing} is two using edge counting and is three using node counting.

The depth of a synset is similar to the distance between two synsets. The depth of a synset is simply the

distance between that synset and the root of the taxonomy in which the synset is located. The depth can be

measured using either edge counting or node counting.

A slightly different notion of depth is the depth of a taxonomy. The depth of a taxonomy is the distance

between the root of a taxonomy and the most distant leaf node from the root. If one considers the taxonomy

to be a type of tree, then this type of type is simply the height of the tree.

WordNet presents an additional difficulty because some synsets have more than one hypernym. The synset

containing the first sense of person, for example, has two hypernyms: {organism, being} and {causal agent,

cause, causal agency} (see Figure 1).

A shared parent of two synsets is called a subsumer. The Least Common Subsumer (LCS) of two synsets

is the subsumer that does not have any children that are also subsumers of the two synsets. In Figure 1,

the subsumers of {living thing, animate thing} and {land, dry land, earth} are {object, physical object} and

{entity}. The Least Common Subsumer of two synsets is the most specific subsumer of the two synsets. The

LCS of {living thing, animate thing} and {land, dry land, earth} is {object, physical object} since {object,

physical object} is more specific than {entity}.

By default, the measures in the WordNet::Similarity package join all the noun taxonomies and all the verb

taxonomies into one taxonomy for nouns and one for verbs by introducing an unique root node for each

part of speech. However, this behavior can be “turned off” so that there is no unique root node for nouns or

verbs.

When a unique root node is not being used, it is possible for two synsets from the same part of speech to

have no common subsumer. In this case, the similarity measures cannot give a similarity score. Even when

a unique root node is used, the measures cannot give a score for synsets from different parts of speech.
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2.2.1 Path

The Path measure in WordNet::Similarity is a simple measure that uses the path length distance to measure

the similarity of synsets. Within the package it is called WordNet::Similarity::path. The distance between

two synsets is measured using node counting. Similarity is defined as

Simpath(s1, s2) =
1

distnode(s1, s2)
(1)

such that distnode(s1, s2) is the distance between synset s1 and synset s2 using node counting. In Figure 1,

the distance between {person} and {living thing, animal} is three, so the similarity score is 1/3.

Since node counting is used, the distance between two synsets is always greater-than or equal-to 1. For

example, the distance between {person} and {person} is 1. Therefore, similarity is always greater-than 0

but less-than or equal-to 1.

If a unique root node is being used, then there will always exist a path between any two noun synsets or

any two verb synsets. If, however, a unique root node is not being used, then it is possible and in the case

of verbs likely that there will not be a path between two synsets. In such a case, the similarity of the two

synsets is undefined.

Since some synsets in WordNet have more than one hypernym, all measures of semantic similarity must take

multiple inheritance into account. In the case of this measure, when there is more than one path between

two synsets as a result of multiple inheritance, the shortest path is used. In Figure 1, there is more than one

path between {person} and {entity}, but the shortest path is through {agent} rather than {organism, being}.

One perceived drawback of a simple edge or node counting measure is that links in a taxonomy like WordNet

can represent different distances between synsets. Some links may represent a large difference in meaning,

while other links may represent only a small refinement in meaning. Typically, links that are high in a

taxonomy (i.e., closer to the root), represent a greater semantic distance, and links low in a taxonomy

represent a smaller semantic distance. There is a greater semantic distance {object, physical object} and

{land, dry land, earth} than there is between {island} and {land, dry land, earth}.
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2.2.2 Wu & Palmer

Wu & Palmer [18] present a measure of semantic similarity based on distances and depths in a taxonomy.

The measure takes into account the distance between each of two synsets, s1 and s2, and their LCS, s3, as

well as the distance between the LCS and the root of the taxonomy in which the synsets reside.

As originally formulated, the similarity of the two synsets is

Simwup(s1, s2) =
2 · distnode(s3, Root)

distnode(s1, s3) + distnode(s2, s3) + 2 · distnode(s3, Root)
(2)

where distnode(s1, s3) is the distance between synset s1 and synset s3 using node counting.

Resnik [16] re-formulated this measure slightly:

Simrwup(s1, s2) =
2 · depthedge(s3)

depthedge(s1) + depthedge(s2)
(3)

where depthedge(s) is the depth of the synset s using edge counting.

The WordNet::Similarity package implements a slight reformulation of the Resnik reformulation by count-

ing nodes instead of edges.

Simadapted wup(s1, s2) =
2 · depthnode(s3)

depthnode(s1) + depthnode(s2)
(4)

Using node counting maintains consistency within the WordNet::Similarity package since the two previous

measures use node counting. This measure is named WordNet::Similarity::wup.

In Figure 1, the node depths of {person} and {plant, flora} are both 5, and the depth of their LCS, {organism,

being}, is 4; therefore, their similarity score is 2·4
5+5 = 0.8 using the adapted Wu & Palmer formulation.

In all three forms of the Wu & Palmer the maximum score is one. A score of one occurs only when the two

synsets are the same (i.e., self-similarity). A score of zero is possible in the first two formulations when the

LCS is the root node. A score of zero is never possible in the third formulation because the depth of the root

node using node counting is one. There is no clear minimum score in this formulation, but the minimum

approaches zero. The advantage of this third formulation is that the score will always be greater than zero

whenever there is a path connecting two synsets. Intuitively, if there is a path connecting two synsets, then

the two synsets are not completely unrelated.

In the case of multiple inheritance, there will be more than one possible similarity score. The measure

uses the LCS that is deepest in the taxonomy (i.e., the LCS that is furthest from the root of the taxonomy).
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Choosing the LCS maximizes the value of the numerator in Equation (4) and generally maximizes the overall

similarity score in the same equation.

2.2.3 Leacock & Chodorow

Another measure of similarity based on distances and depths was proposed by Leacock & Chodorow [7]. It

is implemented as the WordNet::Similarity::lch measure. The measure considers the depth of the taxonomy

in which the synsets are located. They define similarity as

Simlch = −log(
distnode(s1, s2)

2 ·D
) (5)

where D is the depth of the taxonomy in which the synsets lie. The depth of a taxonomy is defined as the

length of the shortest path between the root of the taxonomy and synset sd such that there is no synset that

has a greater shortest path length between it and the root than the length between the root and sd.

Considering again the example of {person} and {plant, flora}, the distance between the two synsets in

Figure 1 is 3, and the maximum depth is 5, the similarity score is −log(3/(2 · 5)) = −log(0.3) = 1.20.

The measure of Leacock & Chodorow is profoundly affected by the presence or absence of a unique root

node. If there is a unique root node, then there are only two taxonomies: one for nouns and one for verbs.

The maximum depth of the noun taxonomy will be 18, and the maximum depth of the verb taxonomy will

be 14 for WordNet 2.0. If, on the other hand, a unique root node is not used, then there are nine noun

taxonomies and over 560 verb taxonomies. The maximum depths of the taxonomies varies considerably.

The shallowest of the noun taxonomies is 9 and the deepest is 18. While the deepest verb taxonomy has a

depth of 14, the mean depth is 2.4 and the median depth is 2. Clearly the noun taxonomies are usually much

deeper than the verb taxonomies.

2.3 Information Content Similarity Measures

Several measures of semantic similarity have been developed that use information content. Information

content is a measure of specificity. The information content of a concept is inversely related to the frequency

with which the concept is expected to occur. A concept that rarely occurs would have a high information

content, and a concept that frequently occurs would have a low information content. A common word such
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as be would have a low information content, but a rare word such as aliquot would have a high information

content.

Mathematically, the information content of a concept is

IC(c) = −logP (c) (6)

where P (c) is the probability of the concept c. A high information content means that the concept conveys

a lot of meaning when it occurs in a text. A concept with a high information content is very specific, but

a concept with a low information content is very general; therefore, information content corresponds to

specificity.

In semantic similarity measures, a concept is a synset, and the probability of a concept is the frequency of

the concept divided by the number of concepts occurring in a corpus:

P (c) = frequency(c)/N (7)

such that N is the number of concepts in the corpus from which the frequency counts were extracted. Fre-

quency counts are propagated up the hierarchies so that the count of a concept is equal to the sum of the

counts of its hyponyms plus the count of the concept itself.

A word can have multiple senses, and each sense of a word will belong to a different synset. If a corpus of

sense-tagged text such as SemCor is available, then counting the frequencies of concepts is straightforward:

for each sense-tagged word in the corpus, increment the count of the synset to which the word sense belongs.

If sense-tagged text is not available, which is the usual case, then the situation is more difficult. Resnik [16]

proposed that when a word with multiple senses occurs, the count for that word should be divided equally

among its senses. For example, if a word w has five senses, then the synsets corresponding to those five

senses will have their frequency counts incremented by 1/5. In WordNet::Similarity, the default behavior

is to increment each synset by one. If w has five senses, the frequency count for each synset would be

incremented by one. It is also possible to use Resnik’s counting method in WordNet::Similarity.

The information content of a concept is zero only when the probability is one. This situation occurs only

when the frequency of the concept is equal to the frequency of all the concepts in the taxonomy, which only

happens when the concept is the unique root node of its taxonomy. If a taxonomy does not have a unique

root node, then the information content can never be zero.
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When the frequency count of a concept is zero (i.e., when it does not occur in the corpus and none of its

hyponyms occurs in the corpus) information content is undefined because the probability is zero. When the

frequency count is undefined, the similarity measures that use information content also return an undefined

value.

It is possible to avoid undefined information content values by using a smoothing scheme. WordNet::Similarity

will optionally perform Laplace smoothing, where the frequency count of every possible event is incre-

mented by one. In WordNet::Similarity, every synset is a possible event; therefore, the frequency count of

each synset is incremented by one.

The advantage of Laplace smoothing is that it avoids the possibility of undefined information content values.

The disadvantage is that it can radically change the distribution of frequencies. Many, if not most, of the

synsets in WordNet are unlikely to occur in any given corpus, and a small number of synsets are likely to

occur repeatedly. Laplace smoothing can often shift too much of the overall probability mass to synsets that

are rarely found in a corpus.

2.3.1 Resnik

Resnik [16] proposed a simple information content-based measure of semantic similarity that considers the

information content of the least common subsumer of the two synsets:

Simres(s1, s2) = IC(LCS(s1, s2)) (8)

In cases where there is more than one subsumer of s1 and s2, the LCS is defined as the common sub-

sumer with the greatest information content. The implementation of Resnik’s measure used for this thesis is

WordNet::Similarity::res.

The maximum similarity value for the Resnik measure occurs when the frequency of an LCS is one. When

the frequency is one, the information content of the LCS is logN , where N is the sum of the frequencies of

all the top-level nodes of the given part of speech.

One characteristic of the Resnik measure is that it is a rather coarse-grained measure. All pairs of synsets

with the same LCS will have the same similarity score. For example, {object, physical object} is the LCS

of many synset pairs in Figure 1, including {plant, flora} and {island}, {plant, flora} and {land, dry land,
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earth}, and {plant, flora} and {object, physical object}. Since these pairs have the same LCS, by Equation

(8) they will have the same similarity score.

2.3.2 Lin

Another similarity measure developed by Lin [9] takes an information-theoretic approach based on three

assumptions. Firstly, the more similar two concepts are, the more they will have in common. Secondly, the

less two concepts have in common, the less similar they are. Thirdly, maximum similarity occurs when two

concepts are identical. The measure of similarity defined by Lin meets these assumptions.

Simlin(s1, s2) =
2 ∗ IC(LCS(s1, s2))

IC(s1) + IC(s2)
(9)

The information content of the LCS will always be less-than or equal-to the information content of both s1

and s2; therefore, the similarity score can be at most one. The score is zero only if the information content

of the LCS is zero. The score is undefined if the information contents of s1 and s2 are zero.

The Lin measure is similar to the measure of Wu and Palmer, except that depth is replaced with information

content. In fact, information content is a type of depth because synsets that are deeper in a taxonomy will

also have a greater information content. Information content is a measure of specificity, and specificity

increases as depth increases.

2.3.3 Jiang & Conrath

Jiang and Conrath [6] proposed a measure of semantic distance that uses information content.

Distjcn(s1, s2) = IC(s1) + IC(s2)− 2 ∗ IC(LCS(s1, s2)) (10)

This distance measure can be converted to a similarity measure by taking the multiplicative inverse of it:

Simjcn(s1, s2) = 1/Dist(s1, s2) (11)

The WordNet::Similarity::jcn measure implements Equation (11).
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By defining a similarity measure as in Equation (11), the distribution of scores is modified. Consider a case

where the synset s1 has the following distances from synsets s2, s3, and s4.

distance

s1 s2 2

s1 s3 3

s1 s4 4

The corresponding similarity scores are

similarity

s1 s2 0.50

s1 s3 0.33

s1 s4 0.25

Note that difference between the distance scores for s1-s2 and s1-s3 is the same as s1-s3 and s1-s4; however,

the same is not true of the similarity scores. This is not necessarily a problem. The best way to interpret the

distance scores is that s2 is closer to s1 than s3 is to s1, and s2 and s3 are both closer to s1 than s4 is to s1.

Likewise for the similarity scores, s2 is more similar to s1 than s2 is similar to s1, etc.

An alternative method of converting the distance score to a similarity score would be to define similarity as

Sim′
jcn(s1, s2) = maxdistance−Dist(s1, s2) (12)

however, the difficulty is determining a suitable value for maxdistance.

The maximum distance possible using Equation (12) is not simple to calculate, and, in any case, would

depend heavily upon the corpus used to calculate the information content values. Every corpus would have

a different maximum distance.

2.4 Semantic Relatedness Measures

Semantic relatedness is a much broader notion than semantic similarity. For example, tire is related to car,

but the two are not very similar since a tire is not a type of a car nor is a car a type of tire. Semantic similarity

is a special case of semantic relatedness where the only relationship considered is the is-a relationship.
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A measure of semantic relatedness quantifies the strength of the relationship between two word senses.

WordNet::Similarity implements three measures of semantic relatedness.

2.4.1 Extended Gloss Overlaps (Adapted Lesk)

Lesk [8] proposed counting overlapping words in glosses to perform word sense disambiguation. An adap-

tation [1] of the Lesk measure finds overlaps in WordNet glosses to measure semantic relatedness. This

adaptation is the WordNet::Similarity::lesk measure. The idea behind the measure is that the more words

that are common in two glosses, the more related the corresponding synsets are. The implementation uses

not only the glosses of the synsets but also uses the relations between synsets in WordNet to compare the

glosses of closely related synsets.

When computing the relatedness of two synsets, s1 and s2, relation functions are used to determine which

glosses are to be compared. The default relation functions used in WordNet::Similarity are shown in Table 1.

Table 2 explains what each function name means.

Each pair of functions specifies the glosses that are to be searched for overlaps. For example, the pair hype-

hype means the gloss for the hypernym of s1 and the gloss for the hypernym of s2 are searched for overlaps.

The pair hype-hypo means that the gloss of the hypernym of s1 is compared to the gloss of the hyponym(s)

of s2. If there is more than one hyponym for s2, then the glosses for each hyponym are concatenated into a

single gloss. The pair glos-hype means that the gloss of s1 is compared to the gloss of the hypernym of s2.

Each pair of relation functions generates a score, and the overall relatedness score is the sum of the scores

for each relation function pair. The scoring mechanism takes into account both the number of words in the

overlaps and the length of the overlaps. The motivation is that a four-word overlap (i.e., an overlap consisting

of four consecutive words in both glosses) is more significant than four one-word overlaps because longer

overlaps are less likely to be incidental. The score for a single relation function pair is the sum of the squares

of the length of each overlap found:

pairscore =
#overlaps∑

i

length2(overlapi) (13)

The overall relatedness score is simply the sum of each of these pairwise scores:
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also also glos sim mero attr

also attr glos syns mero glos

also glos holo also mero holo

also holo holo attr mero hype

also hype holo glos mero hypo

also hypo holo holo mero mero

also mero holo hype mero pert

also pert holo hypo mero sim

also sim holo mero pert also

attr also holo pert pert attr

attr attr holo sim pert glos

attr glos hype also pert holo

attr holo hype attr pert hype

attr hype hype glos pert hypo

attr hypo hype holo pert mero

attr mero hype hype pert pert

attr pert hype hypo pert sim

attr sim hype mero sim also

example example hype pert sim attr

example glos hype sim sim glos

example syns hypo also sim holo

glos also hypo attr sim hype

glos attr hypo glos sim hypo

glos example hypo holo sim mero

glos glos hypo hype sim pert

glos holo hypo hypo sim sim

glos hype hypo mero syns example

glos hypo hypo pert syns glos

glos mero hypo sim

glos pert mero also

Table 1: Default relations used with gloss measures

Relatedness(s1, s2) =
#pairscores∑

j

pairscorej (14)

17



also Also see relation

attr Attribute relation

example The example that is often found in a gloss

glos The gloss without the example part

glosexample The full gloss (both the definition and the example)

holo Holonym relation

hype Hypernym relation

hypo Hyponym relation

mero Meronym relation

pert Pertainym relation

sim Similar relation

syns All the words in a synset

Table 2: Abbreviations for Relation Functions

Using this formulation, one can observe that a single four-word overlap would receive a score of 16, while

four one-word overlaps would only receive a score of 4.

As a simple example of how the scoring works, consider the word senses congress#n#3 and parliament#n#1.

Assume that only one relation function pair is used: glos-glos. The gloss for congress#n#3 is “a national

legislative assembly.” The gloss for parliament#n#1 is “a legislative assembly in certain countries.” There

is one overlap of two consecutive words, “legislative assembly.” The relatedness score would be four.

2.4.2 Context Vectors

Another measure that uses similarities between glosses was proposed by Patwardhan [13]; however, the ap-

proach used is quite different than the Adapted Lesk measure in its details. The WordNet::Similarity::vector pairs

measure is a slight revision of the original measure proposed by Patwardhan.

Context vectors are often used in Information Retrieval for measuring the similarity of documents. A context

vector is essentially a vector representation of the occurrences of a word in different contexts.

The vector measure of Patwardhan measures the semantic relatedness of two word senses, s1 and s2, by

comparing the gloss vectors the corresponding to s1 and s2. A gloss vector for s1 or s2 is formed by adding

together the word vectors of every word in the gloss for s1 or s2.
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The measure works by creating a word vector for every content word found in the any of the WordNet

glosses. A word vector for a word w represents the co-occurrence of every word in a WordNet gloss that

appears with w. For example, the word diabatic occurs in just one gloss with the words involve, transfer,

heat, and process. The word vector for diabatic may look like

~diabatic = ( 0 1 0 1 1 0 1 )

The non-zero entries in the vector represent the frequencies with which the words involve, transfer, heat, and

process co-occur with diabatic. In this case, the each word only co-occurs once. The zero entries represent

words that do not co-occur with diabatic. A real word vector would have thousands of dimensions and would

be very sparse.

A gloss vector is formed by adding together the word vectors for each word found in a gloss. For example,

the gloss vector for diabatic#a#1 is formed by adding together the word vectors for the content words that

occur in the gloss for diabatic#a#1. The gloss for diabatic#a#1 is “involving a transfer of head; ’a diabatic

process”’. The gloss vector is then

~diabatic#a#1 = ~involve + ~transfer + ~heat + ~diabatic + ~process

Finally, the relatedness of two word senses s1 and s2 is the cosine of the angle between the gloss vectors ~s1

and ~s2:

Relatedness(s1, s2) =
~s1 · ~s2

|~s1||~s2|
(15)

One advantage of the gloss vector approach over the gloss overlap approach is that the vector method is not

limited to finding exact matches between glosses.

The gloss vector measure is enhanced by the ability to consider glosses of closely related word senses. The

pairs of relation functions listed in Table 1 can be used in finding the relatedness of word senses. Gloss

vectors are formed for each individual pair of functions and a score is computed using Equation (15) for

each pair. The overall relatedness score is the mean of the individual function pair scores.
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2.4.3 Hirst & St-Onge

Hirst and St-Onge [5] proposed a measure of relatedness based on finding lexical chains between synsets.

The assumption is that a closely related pair of words will be linked by a chain that neither is too long

nor has too many changes in direction. The measure of Hirst & St-Onge has been implemented as the

WordNet::Similarity::hso measure.

Unlike the three path-based measures of similarity discussed previously (Path, Leacock & Chodorow, and

Wu & Palmer), the measure of Hirst & St-Onge finds paths by considering many relations in addition to the

hypernym relations. The relations considered, along with their directions, are listed in Table 3.

The measure considers relatedness to be either extra-strong, strong, or medium-strong. Extra-strong related-

ness occurs only when two word senses are identical. A strong relation occurs when the two word senses are

synonymous, when there is a single horizontal link between the synsets, or when one word sense is a com-

pound of the other word sense and there exists any link between the synsets (e.g., dog and attack dog). In the

case of extra-strong or strong relatedness, a constant is used to quantify the relatedness. WordNet::Similarity

uses a relatedness value of 16 in these cases.

Medium-strong relatedness can have different weights and is defined as

weight = C − path length− k ·#changes in direction (16)

where C and k are constants. In WordNet::Similarity, the values for C and k are 8 and 1 respectively. Thus,

the maximum relatedness value in case of medium-strong relatedness is 8.

To illustrate how this measure of relatedness works, consider the word senses car#n#1 (an automobile) and

jet#n#1 (an airplane with jet engines). There is a path in WordNet that links these two word senses as shown

in Figure 3. The word sense hood#n#5 is a meronym of car#n#1 since a hood is part of a car. Because

an airplane can contain a hood, airplane#n#1 is a holonym of hood#n#5. Since a jet is a type of airplane,

jet#n#1 is a hyponym of airplane#n#1.

The length of the chain linking car#n#1 and jet#n#1 is 3 (counting the relations that link the word senses).

The meronym relation is an upward relation, and the holonym and hyponym relations are downward relations

(see Table 3); therefore, there is one change in direction. The relatedness score using Equation (16) is

score = 8− 3− 1 · 1 = 4
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hood#n#5

car#n#1

holonymmeronym

airplane#n#1

hyponym

jet#n#1

Figure 3: Example of Lexical Chains

Table 3: Directions of WordNet Relations

Relation Direction

Also see Horizontal

Antonymy Horizontal

Attribute Horizontal

Pertinence Horizontal

Similarity Horizontal

Cause Down

Entailment Down

Holonymy Down

Hyponymy Down

Hypernymy Up

Meronymy Up

2.5 Summary

The measures implemented in WordNet::Similarity represent a diverse approach to measuring semantic

similarity and semantic relatedness. Table 4 illustrates the scores that can be expected from each measure in

a few different circumstances.
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Self similarity Immediate parent More distant

measure dog#n#1 dog#n#1 dog#n#1 canine#n#2 dog#n#1 rodent#n#1

res 8.61 8.50 6.28

lin 1.00 .994 .696

jcn 2.96 · 107 9.49 .183

path 1 .5 .2

wup 1 .960 .833

lch 3.58 2.89 1.97

lesk 5105 905 220

vector pairs .785 .252 .135

hso 16 4 3

Table 4: Comparison of measure results
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3 Word Sense Disambiguation Algorithm

Words often have multiple senses. Human beings generally are very good at selecting which sense of a word

is intended in a particular context. For example, the word ball can mean several things, including a round

object used in games or a formal dance. When ball occurs in a sentence, humans can usually comprehend

which sense is intended (e.g., “The batter hit the ball” vs. “He dressed up for the ball”).

It is sometimes useful if software could distinguish between different senses of a word. Selecting the correct

sense of a word in a given context is word sense disambiguation (WSD).

Patwardhan et al. [12] describe a method of disambiguating target words using the WordNet::Similarity

measures of semantic relatedness. The method described is for a “lexical sample” situation, where only one

target word is disambiguated in a context. The target word and its context is often manually annotated using

XML, SGML, or another similar format prior to the disambiguation process.

A more general approach is to disambiguate all of the open-class words in a context. An “all words”

approach is often more useful for certain natural language tasks. An extension of the Patwardhan et al.

approach is discussed here. The algorithm has been implemented as a set of Perl modules and scripts, and

is distributed as WordNet::SenseRelate::AllWords. The name is consistent with the convention for naming

Perl packages and reflects that it implements an extension of the SenseRelate algorithm for an all words

approach and incorporates the WordNet knowledge base.

3.1 Algorithm

Each word in the input text is disambiguated separately, starting with the first word and working left to right.

At each stage, the word being disambiguated is called the target word, and the surrounding words form the

context window.

The algorithm computes a score for each sense of the target word. To find the score for a sense of the target

word (i.e., the target sense), the target sense is compared to the senses of the context words using a semantic

relatedness measure. The algorithm finds the sense of each context word that is most related to the target

sense. The score for each target sense is sum of the relatedness scores between the target sense and each

most related context sense. Once the algorithm finds a score for each sense of the target word, the sense
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with the greatest score is assigned to the target word.

Equation (17) presents the algorithm in a compact mathematical form. For each target word, the algorithm

finds

best sense = argmaxi

t+cr∑

j=t−cl,j 6=t

maxkrelatedness(sti, sjk) (17)

where sti is sense i of word t (i.e., the target word), and sjk is sense k of word j (i.e., a context word). The

context window consists of the cl words to the left of the target word and the cr words to the right of the

target word, after the words not found in WordNet have been removed. The words in the context window

must always be known to WordNet.

The pseudo-code for the algorithm is in Algorithm 1. The relatedness() function on line 15 is a call to one

of the previously described semantic relatedness or semantic similarity measures. Any of the measures can

be used for the algorithm, but some measures may be better suited than others.

The threshold in line 18 can be used to require that all relatedness scores contributing to the overall score

for a candidate word sense be above a certain value. This threshold may be useful in eliminating noise.

3.1.1 The Context Window

In WordNet::SenseRelate::AllWords, the desired window size is chosen by the user. A window size of N

means that there are a total of N words in the context window, including the target word. Since the target

word is not compared to itself, a window of size N means that N − 1 words will be compared to the target

word. The N words are chosen so that there are an equal number of context words on each side of the target

word if N is an odd number. If N is an even number, there will be one more word on the left side of the

target word than on the right. For example, if the window size is four, there will be two words to the left of

the target word and one word to the right.

It is believed that the words preceding a specific word are more likely to influence the meaning of a word

than the words following the word; therefore, when the window size is even and the number of words on

each side of the target must be unequal, the algorithm chooses an extra word to the left.

If the target word occurs near the beginning or end of a sentence, the total number of words in the window

may actually be less than the specified window size. For example, if the target word is the first word in a
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Algorithm 1 Word Sense Disambiguation algorithm
1: function disambiguate-all-words

2: for all wt in input do {wt is known to WordNet and not found in a stoplist}

3: best-sense← disambiguate-single-word (wt)

4: display best-sense

5: end for

6: end procedure

7: function disambiguate-single-word (wt) returns sense s

8: for all sti of target word wt do {sti is the ith sense of the target word wt}

9: scorei ← 0

10: for j = t− cl to t + cr do

11: if j = t then

12: next j

13: end if

14: for all sjk of wj do {sjk is the kth sense of word wj}

15: temp-scorek ← relatedness (sti, sjk)

16: end for

17: best-score← max temp-score

18: if best-score > threshold then

19: scorei ← scorei + best-score

20: end if

21: end for

22: end for

23: return sensei s.t. scorei > scorej for all j, where j 6= i

24: end function
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sentence, there will be no words to the left of the target word in the window. No attempt is made to expand

the window to the right to compensate for the lack of words to the left.

When the window size is two and the target word is the first word in the sentence, the algorithm would

normally be unable to assign a sense number to that word since the context window is empty. In this case,

we assign a sense number of 1 to that word. In WordNet, the sense numbers of words are ranked by their

frequency in SemCor; therefore, the first sense of a word is usually the most likely sense of the word. Senses

of a word that do not appear in the SemCor corpus (cf. Section 4) are assigned sense numbers according to

a lexicographer’s intuitions.

Adjusting the size of the context window will affect how the algorithm performs. A large context window

(e.g., more than two words on each side of the target word) will result in more words being considered for

each sense of the target word. This may increase the chances of finding a sense of the target word that is

closely related to one or more context word senses. A small context window (e.g., one word on each side of

the target word) will result in very few words being considered for each sense of the target word. This might

result in the algorithm finding better matches. Words farther way from the target word are less likely to be

related to words close to the target word; therefore, using a small window may result in fewer unrelated

words being used. Additionally, using a small context window will result in the algorithm running much

faster since there are fewer comparisons to perform.

More precisely, the number of relatedness computations required to disambiguate a single word is a function

of the number of senses of that target word, the number of context words, and the number of senses of each

context word. If the target word has p senses, the window size is N , and each context word, wi has qi senses,

then the number of relatedness computations required will be

Computations =
N−1∑

i=1

p · qi (18)

For example, assume the context window, N , is 2. Let the target word have two senses, and the sole context

word have three senses. Using Equation (18), one can observe that 6 relatedness values will need to be

computed to disambiguate the target word. If the window were expanded by one word, and the new context

word had 2 senses, then the number of computations necessary would be 10.
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3.1.2 Fixing Word Senses

In the preceding algorithm, when a sense number is assigned to a word, other senses of the word are still

considered when disambiguating subsequent words in a sentence. In the sentence, “dogs hate cats”, if dogs

is assigned sense number 1, other senses of dogs would normally still be considered when disambiguating

hate and cats. The algorithm as used for the experiments in this thesis would use all the senses of dogs when

disambiguating the other words in the sentence.

In WordNet::SenseRelate::AllWords, there is an option to fix the senses as they are assigned so that other

senses of a word are not considered once a word has been disambiguated. This scheme is logically pleasing

because in the “all words” task, the computations are less independent of each other. It is also more efficient

because fewer relatedness values need to be computed.

3.1.3 Part of Speech Tags

The WordNet::SenseRelate::AllWords package is capable of accepting text that is part-of-speech tagged and

is also capable of accepting untagged text. Words in part-of-speech tagged text have been assigned a tag that

indicates the part-of-speech in which the words have been used. One popular tag set is the Penn Treebank tag

set. When using the Penn Treebank tags, each word is followed by a slash and then one or more characters

indicating the part-of-speech. For example, in the sentence, “The/DT dog/NN ran/VBD home/NN”, the DT

tag indicates a determiner, the NN tag denotes a singular noun, and the VBD tag is used for a verb in the

past tense.

Using part-of-speech tagged text can improve the performance of the algorithm in terms of speed and pre-

cision. When part-of-speech tagged text is used fewer senses of the target words will need to be considered

when a word has senses belonging to more than one part-of-speech. The word walk, for example, can be

either a noun or a verb. Since fewer senses will be considered, using tagged text will result in the algorithm

running faster since, according to Equation (18), fewer word senses equates to fewer relatedness values be-

ing computed. Precision will often increase because there are fewer incorrect senses of a target word that

the algorithm could incorrectly choose as the correct sense.

There are several good automatic part-of-speech taggers. One of the most popular is Brill’s [3] the rule
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based tagger.2

2The tagger is available from http://www.cs.jhu.edu/ brill/
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4 Experimental Data

Evaluating the performance of Word Sense Disambiguation algorithms requires manually sense-tagged cor-

pora. A sense-tagged corpus is a body of text where a human expert has assigned sense tags using a dictio-

nary or similar knowledge base as a source of sense information. A program that implements an algorithm is

used to disambiguate the words in a corpus, ignoring the sense tags. The sense tags assigned by the program

are then compared to the manually-assigned sense tags.

There are relatively few sense-tagged corpora available. The largest is SemCor [11], which is a subset of the

Brown Corpus. There are also corpora created for the SENSEVAL-2 and SENSEVAL-3 competitions.

Although hand-tagging text is a reliable (albeit time-consuming) method of assigning senses to words in a

corpus, it is not perfect. Humans often disagree about which sense of a word is intended in a text. Words

are often used ambiguously or even incorrectly. Dictionary senses are often difficult to tell apart. Since one

human’s judgments are unlikely to correspond exactly to another’s, no word sense disambiguation algorithm

can be expected to perform perfectly.

All words data is much more difficult to obtain than lexical sample data. Lexical sample data typically has

one word tagged throughout the text. For instance, every occurance line might be tagged in a corpus. It

is much easier for a human expert to learn every definition of a single word and then assign tags to each

instance of the word than it is to assign tags to every word in a corpus. Assigning a tag to every word in a

corpus requires looking up every word in a dictionary. The tagging of all words data could be less accurate

because the human expert does not become very familiar with each word’s definition.

4.1 SemCor

The Brown Corpus was created at Brown University in 1964. The corpus contains a wide selection of general

English texts and consists of over one million words. The corpus includes news articles, fiction, religious

works, and scientific writings. SemCor consists of texts selected from the Brown Corpus and consists of

about 360,000 words of which about 221,000 are sense tagged. The untagged words are not closed class

words and do not appear in WordNet. SemCor is broken into 186 separate files with each corresponding to

a file in the Brown Corpus.
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Since the Brown Corpus was created in 1964, the corpus does not reflect changes in the English language

during the past forty years. WordNet, on the other hand, was created in the 1990s and is updated frequently

to reflect changes in the language.

The words in SemCor were tagged using WordNet version 1.6. WordNet has undergone changes since

version 1.6. The version used in this thesis is version 2.0. The sense tags were mapped from the original

WordNet 1.6 senses to WordNet 2.0 sense; however, many senses have been added and deleted since Word-

Net 1.6. In cases where the original sense from 1.6 could not be mapped to a 2.0 sense, the word is omitted

from the experiments in this thesis.

The experiments in this thesis used the entirety of SemCor as well as a subset of SemCor. The subset

consists of five files were selected for use in the experiments.3The five files contain 9,442 words; 5,800 of

those words are open class words, but only 5,012 words could be mapped to valid senses in WordNet 2.0.

The motivation for using a subset of the SemCor data is that it is not always feasible to use all of SemCor

because of its size.

Table 5 shows the distribution of the open class words in SemCor by part of speech. The table also shows

the breakdown of the subset of SemCor used in the experiments. Note that only the open class words that

could be mapped to WordNet 2.0 senses are included in the table.

Table 5: Breakdown of Test Data by Part of Speech

nouns verbs adjectives adverbs total

SemCor 87,422 47,701 34,835 19,709 189,667

SemCor5 2,408 1,407 760 437 5,012

SENSEVAL-2 1,061 510 456 288 2,315

SENSEVAL-3 892 725 348 14 1,979

4.2 SENSEVAL

The goal of SENSEVAL is to evaluate the strengths and weaknesses of various Word Sense Disambiguation

systems. There have been three competitions held so far, and a fourth is planned for the near future. The

3The files are br-a01, br-a02, br-k18, br-m02, br-r05.
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competitions include a number of different tasks, and the SENSEVAL organization develops a set of test data

to use for evaluating the systems. There were several different types of data sets created, including one for a

lexical sample task and one for an all words task. This thesis uses the all words data from SENSEVAL-2 and

SENSEVAL-3 for evaluation.

The SENSEVAL-2 data used in this thesis is the English all words data. The data is a small subset of the

Penn Treebank corpus and consists of 4,873 words taken from Wall Street Journal articles. 2,473 of the

4,873 words are open-class words, and 2,315 of the open-class words are found in WordNet 2.0.

The SENSEVAL-3 data used is the English all words data. Like the SENSEVAL-2 all words data, this data is

a small subset of the Penn Treebank corpus. The data is split into three separate files. Two of the files are

from Wall Street Journal articles and one is from a work of fiction. Of the 4,883 words in the set, 2,081 are

open-class words and 1,979 of the open class words are found in WordNet 2.0.

Table 5 shows the distribution of the open class words in the SENSEVAL-2 and SENSEVAL-3 data by part of

speech. Only words with valid WordNet 2.0 senses are included in the table. Notice the SENSEVAL-3 data

has a significantly higher percentage of verbs than the other data sets.
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5 Experimental Results

The experiments presented in this thesis were conducted using the data sets presented in the previous sec-

tion. The results are reported using precision, recall, and the F Measure. Precision is the number of words

assigned correct sense numbers by the algorithm divided by the total number of words assigned sense num-

bers by the algorithm. Recall is the number of correctly assigned senses divided by the total number of

words in the corpus. The F Measure combines precision and recall into a single quantity.

F =
1

α1
p

+ (1− α) 1
r

(19)

where p is precision and r is recall. The constant α allows the precision and recall to be weighted. To weight

precision more heavily than recall, α is chosen to be greater than 0.5. To weight recall more heavily than

precision, α is chosen to be less than 0.5. If α is exactly 0.5, then precision and recall are weighted equally,

and the previous equation simplifies to

F =
2 · p · r

p + r
(20)

In this case, the value of the F Measure is simply the harmonic mean of p and r. In this thesis, precision and

recall are weighted equally; therefore, the values for the F Measure that are reported use equation (20).

When conducting experiments, values need to be selected for several parameters. The most universal, and

perhaps the most significant, is the window size. The window can consist of two or more words. The

window size is the total number of words in the window. A window of one would only have a target word

but no context words; therefore, the minimum size used is two.

In general, a small window size results in high precision but low recall. Words close to the target word are

more likely to be related to the target words than words that are farther away. The experiments presented

in this section were conducted using a window size of 2, 3, 4, and 5. Recall that 2 is the smallest useful

window size. Window sizes larger than 5 make the algorithm run very slowly because a large window size

requires many relatedness values to be computed.
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5.1 SemCor Results

The experiments using SemCor were conducted both on the entirety of SemCor and on the subset of five

files discussed in the previous section. The experiments used a window size of 2, 3, 4, and 5. The results for

all of SemCor are shown in Table 6 and the results for the subset of SemCor (SemCor5) are in Table 7. The

results are shown in terms of precision (P), recall (R), and the F Measure (F).

Not all measures were used with all of SemCor because the amount of data in SemCor made using some

measures infeasible. The results for SemCor do not include the Context Vector measure or the measure of

Hirst and St-Onge. All the measures were used with SemCor5.

Note that there are two rows for the Lesk measure. The Lesk measure is usually used with a stoplist to

eliminate stopwords from the glosses before they are compared. The row labeled lesk.ns corresponds to

using the Lesk measure with no stoplist.

The random entry in the tables serves as a baseline for analyzing the results. Under the random scheme, a

word sense is chosen at random from the possible senses for a word. If a word has ten senses, then there will

be a 0.1 percent chance of guessing the correct sense. A value of 0.414 indicates that the mean number of

senses for a word in WordNet is about 2.4. The random guessing scheme does not use a window; however,

the values are shown under the columns for the different window sizes for comparison purposes.

The entry labeled sense1 in Table 7 corresponds to guessing sense number one for each word. The words

in WordNet are numbered (approximately) according to frequency. The first sense of a word in WordNet is

usually represents the most frequent use of that word; therefore, always guessing the first sense of a word is

an approximation to guessing the most frequent sense of a word. It can be observed that the algorithm never

does better than guessing the first sense of a word. Like the random guessing scheme, the sense1 scheme

does not use a context window; however, the values are shown under the columns for the different window

sizes for comparison purposes.

Figure 4 is a graph of precision versus window size for each of the measures on the SemCor5 data. The

graph illustrates a slight decrease in precision for most of the measures when window size is increased.

Figure 5 is a graph of recall versus window size for each measure. Most of the measures experience an

increase in recall as window size increases. Finally, Figure 6 is a graph of the F Measure versus window

size for all measures. Most of the measures show an increase in the value of the F Measure when the window
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Figure 4: Precision for SemCor5 results
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Figure 5: Recall for SemCor5 results
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Figure 6: F Measure for SemCor5 results
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .637 .199 .303 .586 .196 .294 .555 .233 .328 .550 .268 .360

lch .637 .199 .303 .586 .196 .294 .555 .233 .328 .550 .268 .360

wup .616 .192 .293 .553 .185 .277 .521 .219 .308 .516 .252 .339

res .599 .151 .241 .478 .115 .185 .450 .139 .212 .442 .162 .237

lin .650 .157 .253 .572 .128 .209 .537 .154 .239 .528 .181 .270

jcn .690 .215 .328 .671 .223 .335 .636 .264 .373 .631 .305 .411

lesk .612 .445 .515 .605 .487 .540 .610 .517 .560 .614 .535 .572

lesk.ns .624 .520 .567 .610 .534 .569 .611 .545 .576 .611 .550 .579

random .414 .414 .414 .414 .414 .414 .414 .414 .414 .414 .414 .414

sense1 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764

Table 6: SemCor results

size is increased.

The algorithm clearly does best overall with the Lesk measure; however, the Jiang and Conrath measure,

along with other similarity measures, achieve high precision. The similarity measures do not do well overall

because they are only able to produce results for the nouns and verbs, and they even then, they are only able

to compare nouns to other nouns and verbs to other verbs. If a verb occurs in a sentence, but there are no

other verbs near it, none of the six similarity measures will be able to make an attempt at disambiguating it.

The relatedness measures (lesk, vector pairs, and hso), can compare any word sense to a words sense from

any other part of speech.

5.2 SENSEVAL-2 Results

Similar experiments were conducted using the SENSEVAL-2 data. The results are shown in Table 8. The

results are similar to the results using SemCor, but the values tend to be somewhat lower.

Like the SemCor results, the algorithm never does better than the sense1 method. The sense1 results are

lower than the results for SemCor, but the results using the random-guessing method are about the same.

The sense numbers in WordNet are assigned according to their frequency in SemCor; therefore, it is logical

that the sense1 method would do better on SemCor than on other corpora because each corpus is likely to
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .667 .231 .343 .616 .223 .327 .573 .263 .360 .572 .307 .400

lch .667 .231 .343 .614 .222 .326 .571 .262 .359 .572 .306 .399

wup .638 .221 .328 .576 .208 .306 .533 .245 .336 .529 .284 .370

res .638 .178 .278 .518 .134 .213 .469 .156 .234 .457 .181 .259

lin .677 .183 .288 .601 .148 .238 .556 .174 .265 .533 .198 .289

jcn .727 .251 .373 .718 .259 .381 .665 .302 .415 .656 .349 .456

hso .696 .152 .250 .559 .097 .165 .535 .125 .203 .529 .152 .236

lesk .633 .475 .523 .630 .519 .569 .635 .547 .588 .635 .562 .596

lesk.ns .644 .550 .593 .629 .558 .591 .630 .570 .598 .631 .575 .602

vector pairs .466 .398 .429 .403 .358 .379 .399 .361 .379 .402 .366 .383

random .414 .414 .414 .414 .414 .414 .414 .414 .414 .414 .414 .414

sense1 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764 .764

Table 7: SemCor5 results

have a slightly different distribution of senses for any particular word.

Like the SemCor results, the semantic relatedness measure based on context vectors and the measure of

Hirst and St-Onge do not perform well. The Hirst and St-Onge measure only returns non-zero values for

pairs of word senses that are somewhat closely related. Recall that the measure only quantifies relationships

that Hirst and St-Onge call extra-strong, strong, and medium-strong. All the other measures of similarity or

relatedness will quantify fairly weak relationship between word senses. As a result, the Hirst and St-Onge

measure has very low recall.

5.3 SENSEVAL-3 Results

Similar experiments were also conducted on SENSEVAL-3. The results are shown in Table 9. The results

using the SENSEVAL-3 data are similar to the SENSEVAL-2 results. The values using the sense1 and random

methods are almost the same, probably because the data sets are very similar. The recall values for the six

similar measures are noticeably better and are similar to the recall values for SemCor.
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .587 .168 .261 .528 .162 .248 .515 .200 .288 .517 .236 .324

lch .587 .168 .261 .527 .161 .247 .513 .199 .287 .519 .237 .325

wup .582 .166 .258 .504 .154 .236 .492 .191 .275 .497 .227 .317

res .573 .127 .208 .439 .088 .147 .431 .116 .183 .437 .143 .215

lin .606 .110 .186 .481 .066 .116 .456 .089 .148 .461 .113 .182

jcn .644 .162 .259 .621 .162 .257 .574 .191 .287 .578 .233 .332

hso .609 .108 .183 .473 .061 .108 .455 .086 .145 .466 .111 .180

lesk .582 .410 .481 .582 .462 .515 .578 .489 .530 .588 .514 .548

lesk.ns .617 .516 .562 .610 .537 .571 .604 .543 .572 .608 .552 .579

vector pairs .500 .419 .456 .472 .417 .443 .475 .427 .450 .471 .429 .449

random .432 .432 .432 .432 .432 .432 .432 .432 .432 .432 .432 .432

sense1 .679 .679 .679 .679 .679 .679 .679 .679 .679 .679 .679 .679

Table 8: SENSEVAL-2 results

window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .565 .206 .302 .501 .186 .271 .491 .241 .323 .494 .289 .365

lch .565 .206 .302 .501 .186 .271 .496 .244 .327 .497 .291 .367

wup .539 .196 .287 .473 .176 .256 .456 .224 .300 .469 .274 .346

res .526 .152 .236 .385 .096 .154 .367 .125 .186 .368 .154 .217

lin .561 .152 .239 .439 .094 .155 .409 .120 .186 .404 .147 .216

jcn .604 .213 .315 .569 .201 .297 .532 .245 .335 .526 .290 .374

hso .559 .131 .212 .338 .056 .096 .342 .081 .131 .360 .108 .166

lesk .549 .419 .475 .547 .448 .492 .555 .477 .513 .559 .495 .525

lesk.ns .581 .499 .537 .556 .490 .521 .561 .502 .530 .569 .515 .541

vector pairs .462 .398 .428 .395 .349 .370 .399 .357 .377 .396 .359 .376

random .434 .434 .434 .434 .434 .434 .434 .434 .434 .434 .434 .434

sense1 .693 .693 .693 .693 .693 .693 .693 .693 .693 .693 .693 .693

Table 9: SENSEVAL-3 results
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .579 .246 .345 .558 .309 .398 .553 .382 .452 .550 .436 .486

lch .579 .246 .345 .556 .308 .396 .550 .380 .449 .551 .437 .487

wup .579 .246 .345 .537 .298 .383 .535 .369 .437 .534 .424 .473

res .560 .177 .269 .472 .180 .261 .473 .238 .317 .478 .289 .360

lin .601 .140 .227 .524 .133 .212 .510 .185 .272 .510 .231 .318

jcn .681 .239 .354 .671 .306 .420 .633 .363 .461 .632 .430 .512

hso .596 .132 .216 .500 .113 .184 .499 .159 .241 .518 .206 .295

lesk .689 .597 .640 .678 .649 .663 .667 .661 .664 .670 .668 .669

vector pairs .545 .471 .505 .515 .493 .504 .520 .515 .517 .504 .502 .503

random .467 .467 .467 .467 .467 .467 .467 .467 .467 .467 .467 .467

sense1 .739 .739 .739 .739 .739 .739 .739 .739 .739 .739 .739 .739

Table 10: SENSEVAL-2 results for nouns

5.4 Results by Part of Speech

It is known that the semantic relatedness measures work better with some parts of speech than others. The

six similarity measures work only with nouns and verbs and do not work at all with adjectives and adverbs.

Even the other measures of relatedness are known to work better with certain parts of speech.

Results using only nouns as the target word in the SENSEVAL-2 data are in Table 10. In comparison to the

results for all parts of speech in Table 8, the numbers are noticeably higher for all three metrics: precision,

recall, and the F Measure. In particular, the recall is significantly better for the six similarity measures.

The six similarity measure have much better recall when only nouns are scored because those measures only

work with nouns and verbs. Because these measures do not work with adjectives and adverbs, the recall is

automatically reduced when using these six measures.

Table 11 shows results using only verbs. The results are noticeably worse than the results for nouns. The

recall for the six similarity measures is particularily bad. The similarity measures rely on having a good

hierarchical structure linking the synsets. The verb hierarchies in WordNet are very different than the noun

hierarchies. There are only nine noun hierarchies, and they tend to be very deep. There are hundereds of
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .468 .102 .167 .383 .090 .146 .349 .114 .172 .389 .165 .232

lch .468 .102 .167 .383 .090 .146 .349 .114 .172 .394 .167 .234

wup .441 .096 .158 .342 .080 .130 .301 .098 .148 .352 .149 .209

res .397 .061 .106 .211 .024 .043 .172 .029 .050 .202 .045 .074

lin .419 .061 .106 .245 .024 .044 .157 .022 .038 .193 .033 .056

jcn .418 .090 .148 .415 .096 .156 .354 .114 .172 .393 .165 .232

hso .444 .063 .110 .280 .027 .049 .212 .033 .057 .229 .047 .078

lesk .385 .373 .379 .387 .380 .383 .378 .373 .375 .380 .378 .379

vector pairs .314 .306 .310 .281 .276 .278 .274 .271 .272 .278 .276 .277

random .271 .271 .271 .271 .271 .271 .271 .271 .271 .271 .271 .271

sense1 .455 .455 .455 .455 .455 .455 .455 .455 .455 .455 .455 .455

Table 11: SENSEVAL-2 results for verbs

verb hierarchies, and most of them are only a few concepts deep. The poor quality of the verb hierarchies

severely limits the effectiveness of the similarity measures. Furthermore, there is often only one verb in a

sentence, while there is often more than one noun in a sentence. If there is only one verb in a sentence, there

will be no other verbs in the context window to which the target word can be compared.

Table 12 shows results using only the adjectives. The results for the six similarity measures are not shown.

For those measures, the recall would always be zero and the precision would be undefined. The precision

values for adjectives are significantly higher than the precision for nouns or verbs.

Table 13 shows results using only the adverbs. The results for the six similarity measures are not shown. For

those measures, the recall would always be zero and the precision would be undefined. The random-guess

method does quite well for adverbs, which indicates that most words have a small number of senses. A score

of .562 indicates that, on average, an adverb occurring in the corpus has slightly less than two word senses.

Like the results for adjectives, the precision values are quite high with adverbs.
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measure window P R F

hso 2 .917 .087 .159

hso 3 .833 .020 .039

hso 4 .714 .040 .076

hso 5 .565 .052 .095

lesk 2 .789 .434 .560

lesk 3 .806 .439 .568

lesk 4 .807 .441 .570

lesk 5 .805 .443 .571

random - .447 .447 .447

sense1 - .728 .728 .728

vector pairs 2 .575 .318 .410

vector pairs 3 .581 .316 .409

vector pairs 4 .594 .325 .420

vector pairs 5 .598 .329 .424

Table 12: SENSEVAL-2 Results for Adjectives

measure window P R F

hso 2 .778 .170 .279

hso 3 1.00 .007 .014

hso 4 1.00 .007 .014

hso 5 .667 .007 .014

lesk 2 .641 .601 .620

lesk 3 .588 .559 .573

lesk 4 .596 .573 .584

lesk 5 .613 .604 .608

random - .562 .562 .562

sense1 - .774 .774 .774

vector pairs 2 .620 .590 .605

vector pairs 3 .567 .545 .556

vector pairs 4 .561 .545 .553

vector pairs 5 .585 .583 .584

Table 13: SENSEVAL-2 Results for Adverbs
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5.5 Other Parameters

The Lesk measure is affected by the relations used in forming superglosses. The default set of relations used

is shown in Table 1. Table 15 shows a reduced set of relations also used in experiments. The results of these

experiments are shown in Table 14.

Reducing the set up relations used reduces both precision and recall. Using the reduced set of relations

results in smaller superglosses. Having smaller superglosses means that the Lesk measure may run faster

because less text needs to be searched for overlaps, but the difference in speed appears to be negligible.

window P R F

lesk 2 .617 .516 .562

lesk 3 .610 .537 .571

lesk 4 .604 .543 .572

lesk 5 .608 .552 .579

lesk.reduced 2 .547 .457 .498

lesk.reduced 3 .529 .466 .496

lesk.reduced 4 .521 .468 .493

lesk.reduced 5 .515 .468 .490

Table 14: SENSEVAL-2 using Lesk with different relations

Three similarity measures use information content (Jiang & Conrath, Resnik, and Lin). The information

content values are derived from a corpus. The default information content data is derived from SemCor

using the sense tags. Another corpus is the British National Corpus. Unlike SemCor, the British National

Corpus is not sense-tagged.

Table 16 shows the results of using information content data derived from the British National Corpus with

the Jiang & Conrath measure on the five SemCor files mentioned previously. There are small differences in

the results when using Laplace (Add1) smoothing or Resnik counting, and the use of smoothing or Resnik

counting does seem to increase both precision and recall, but the differences are not large.

Table 17 shows the results of using the same information content data with the Lin measure on the same

five SemCor files. The differences in this case are smaller than the differences with the Jiang & Conrath

measure.
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5.6 Fixed Mode

As mentioned previously, the algorithm normally considers all the senses of a word in the context window,

even if the algorithm has previously assigned a sense number to a word. In fixed mode, the algorithm will

only consider the assigned sense of a word if a sense number was already assigned by the algorithm. The

preceeding experiments have used the default behavior. The following experiments were conducted in fixed

mode.

5.6.1 SemCor

The experimental results for the five SemCor files are shown in Table 19. The results are very similar to the

results in Table 7 on page 38; although, the numbers are consistently slightly lower in fixed mode. Using

fixed mode does not have a significant effect on the algorithm.

5.6.2 SENSEVAL-2

The results using the SENSEVAL-2 data in the fixed more are shown in Table 20. The results are quite similar

to the results without fixed mode (cf. Table 8). Most of the measures show a very slight decrease for all

three metrics.

5.6.3 SENSEVAL-3

Table 21 shows the results using the SENSEVAL-3 data in fixed mode. Like the SemCor and SENSEVAL-2

results, the numbers are slighly lower in most cases. Overall, the use of fixed mode does not appear to make

a significant difference.
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also also glos hype mero holo

also attr glos mero mero hype

also glos glos pert mero mero

also holo glos sim mero pert

also hype glos syns mero sim

also mero holo also pert also

also pert holo attr pert attr

also sim holo glos pert glos

attr also holo holo pert holo

attr attr holo hype pert hype

attr glos holo mero pert mero

attr holo holo pert pert pert

attr hype holo sim pert sim

attr mero hype also sim also

attr pert hype attr sim attr

attr sim hype glos sim glos

example example hype holo sim holo

example glos hype hype sim hype

example syns hype mero sim mero

glos also hype pert sim pert

glos attr hype sim sim sim

glos example mero also syns example

glos glos mero attr syns glos

glos holo mero glos

Table 15: Lesk’s reduced relation set
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Counting Smoothing window precision recall F Measure

Normal None 2 .664 .228 .339

Normal Add1 2 .665 .230 .341

Resnik None 2 .668 .229 .341

Resnik Add1 2 .670 .232 .345

Normal None 3 .619 .221 .326

Normal Add1 3 .624 .226 .332

Resnik None 3 .627 .224 .330

Resnik Add1 3 .632 .228 .335

Normal None 4 .572 .260 .358

Normal Add1 4 .576 .264 .362

Resnik None 4 .582 .264 .363

Resnik Add1 4 .572 .260 .358

Normal None 5 .567 .301 .393

Normal Add1 5 .572 .307 .400

Resnik None 5 .570 .303 .396

Resnik Add1 5 .567 .301 .393

Table 16: Results using the BNC with the Jiang & Conrath Measure

46



Counting Smoothing window precision recall F Measure

Normal None 2 .639 .177 .277

Normal Add1 2 .641 .179 .280

Resnik None 2 .638 .177 .277

Resnik Add1 2 .640 .180 .280

Normal None 3 .539 .138 .220

Normal Add1 3 .543 .141 .224

Resnik None 3 .540 .138 .220

Resnik Add1 3 .545 .141 .224

Normal None 4 .492 .162 .244

Normal Add1 4 .497 .166 .249

Resnik None 4 .496 .164 .246

Resnik Add1 4 .492 .162 .244

Normal None 5 .474 .185 .266

Normal Add1 5 .481 .190 .272

Resnik None 5 .482 .188 .270

Resnik Add1 5 .474 .185 .266

Table 17: Results using the BNC with the Lin Measure
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Counting Smoothing window precision recall F Measure

Normal Add1 2 .638 .178 .278

Normal Add1 3 .521 .135 .214

Normal Add1 4 .475 .158 .237

Normal Add1 5 .462 .138 .262

Resnik Add1 2 .639 .179 .280

Resnik Add1 3 .522 .135 .214

Resnik Add1 4 .475 .158 .237

Resnik Add1 5 .462 .183 .262

Resnik None 2 .639 .179 .280

Resnik None 3 .522 .135 .214

Resnik None 4 .472 .157 .236

Resnik None 5 .462 .183 .262

Normal None 2 .638 .178 .278

Normal None 3 .521 .135 .214

Normal None 4 .475 .158 .237

Normal None 5 .462 .183 .262

Table 18: Results using the BNC with the Resnik Measure

window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .652 .225 .334 .637 .231 .339 .571 .245 .343 .574 .294 .389

lch .652 .225 .334 .637 .231 .339 .570 .244 .342 .569 .291 .385

wup .630 .218 .324 .602 .218 .320 .538 .231 .323 .530 .271 .359

res .649 .172 .272 .539 .131 .211 .486 .144 .222 .454 .161 .238

lin .675 .174 .277 .612 .143 .232 .555 .155 .242 .533 .178 .267

jcn .721 .248 .369 .726 .262 .385 .654 .279 .391 .648 .331 .438

hso .703 .147 .243 .559 .095 .162 .537 .119 .195 .527 .148 .231

lesk .615 .427 .504 .625 .507 .560 .630 .536 .579 .632 .555 .591

lesk.ns .638 .543 .587 .627 .557 .590 .628 .569 .567 .629 .573 .600

vector pairs .464 .397 .428 .403 .358 .379 .398 .360 .378 .395 .360 .377

Table 19: Results using SemCor5 in fixed mode
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window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .582 .166 .258 .549 .168 .257 .511 .185 .272 .528 .229 .319

lch .582 .166 .258 .549 .168 .257 .515 .186 .273 .529 .229 .320

wup .574 .164 .255 .529 .162 .248 .496 .179 .263 .515 .223 .311

res .585 .125 .206 .467 .085 .144 .435 .103 .166 .457 .134 .207

lin .616 .108 .184 .497 .063 .112 .489 .085 .145 .494 .110 .180

jcn .638 .159 .254 .629 .163 .259 .581 .182 .277 .593 .231 .332

hso .617 .106 .181 .468 .060 .106 .455 .081 .138 .464 .108 .175

lesk .568 .361 .441 .578 .451 .507 .579 .476 .522 .580 .499 .536

lesk.ns .621 .517 .564 .611 .537 .572 .602 .540 .569 .609 .552 .579

vector pairs .499 .419 .456 .477 .421 .447 .472 .425 .447 .473 .430 .450

Table 20: Results using SENSEVAL-2 in fixed mode

window 2 window 3 window 4 window 5

measure P R F P R F P R F P R F

path .566 .206 .302 .523 .195 .284 .494 .223 .307 .476 .261 .337

lch .566 .206 .302 .522 .194 .283 .495 .224 .308 .478 .263 .339

wup .540 .196 .288 .493 .183 .267 .458 .207 .285 .456 .251 .324

res .546 .148 .233 .393 .090 .146 .359 .106 .164 .366 .135 .198

lin .573 .147 .234 .455 .091 .152 .406 .106 .168 .416 .136 .205

jcn .610 .214 .317 .588 .208 .307 .524 .222 .312 .511 .263 .347

hso .568 .127 . 208 .331 .054 .093 .330 .073 .120 .357 .103 .160

lesk .534 .377 .442 .540 .437 .483 .540 .455 .494 .550 .482 .514

lesk.ns .587 .504 .542 .557 .491 .522 .560 .501 .529 .569 .515 .541

vector pairs .451 .388 .417 .390 .344 .366 .395 .354 .373 .395 .358 .376

Table 21: Results using SENSEVAL-3 in fixed mode
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6 Related Work

This thesis has presented a novel method of all words word sense disambiguation. This section describes

the work on which this thesis is founded and describes related methods of all words disambiguation.

6.1 Gloss Overlaps for Word Sense Disambiguation

Much of the foundation of the work presented in this thesis was laid by Lesk [8]. Lesk proposed a method

of word sense disambiguation that compared the glosses of an ambiguous word to the glosses of the sur-

rounding context. This method is the foundation of the Adapted Lesk semantic relatedness measure (cf. [1]

[2]).

Lesk’s method of word sense disambiguation was founded upon the assumption that the correct sense of an

ambiguous word is likely to have a similar gloss to the glosses of the surrounding words. Each sense of

the ambiguous word receives a score based on the number of words in the gloss of each sense that are also

found in the glosses of the surrounding words.

As an example of how his algorithm works, consider the word engine. Engine has three sense in WordNet.

1. motor that converts thermal energy to mechanical work

2. something used to achieve a purpose; “an engine of change”

3. a wheeled vehicle consisting of a self-propelled engine that is used to draw trains along railway tracks

If the word railcar occurs near the word engine, then the gloss of railcar can be compared to the gloss of

engine (there is only one sense of railcar in WordNet). In WordNet, the gloss of railcar is

a wheeled vehicle adapted to the rails of railroad; “three cars had jumped the rails”

The word vehicle is found in both the gloss of railcar and the third sense of engine. The word a occurs in

the gloss of railcar and in the glosses for the second and third senses of engine.

The score for the first sense of engine would be one since there is one common word, to, between its gloss

and the gloss of railcar. The score for the second sense of engine would be one since there is one common
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word, a. The score for the third sense of engine is two since there are two shared words, vehicle and a 4.

Since the third sense of engine has the highest score, it is most likely to be the correct sense.

One limitation on the original Lesk algorithm is that glosses tend to be very short, and even if two words are

closely related, it is often unlikely that there will be a shared word in the two glosses.

6.2 Target Word Semantic Relatedness Disambiguation

Significant work [13][12][14] has been done using the WordNet::Similarity measures for target word dis-

ambiguation. The algorithm used in this previous work is the basis of the algorithm presented in chapter 3

of this thesis.

Target word disambiguation differs from all words disambiguation in several important ways. In target word

disambiguation, there is only one ambiguous word under consideration. The word is often set apart in a text

using a markup language such as XML. An all words system must be able to handle generic text, often

without any special formatting.

In target word disambiguation, the target word is rarely, if ever, at the beginning or end of a sentence (or

other window of context). An all words system needs to be able to disambiguate words at the beginning or

end of a context window.

While a target word system fits many uses quite well, an all words system is usually more generic and

flexible.

6.3 Set-based Semantic Relatedness Disambiguation

Another situation where word sense disambiguation is useful is when a single ambiguous word is associated

with a set of words. The set of words can form a context to use for disambiguating the ambiguous word. For

example, the word Java has several meanings. It can refer to an island in Indonesia, coffee, or a programming

language.

If an instance of the word Java were associated with a set of words like {Jakarta, Indian Ocean, island},

4In practical applications, stop words such as a, the, that, etc. would often be removed before the glosses are compared. The

scores would then be 0, 0, and 1 for the three senses.
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we known that the first sense of Java would be most appropriate. If the set of words were {object-oriented,

class, platform-independent, program}, we would know that the third sense would be most appropriate.

The algorithm used in this thesis can be easily adapted to the situation described here. In this situation,

there is no window of context surrounding the target word. Instead, the context for the target word is the

associated set of words. The sense of target word that is projected to be the correct sense is the sense that is

most related to the words in the associated set. Equation (17) can be reformulated slightly. If there are N

context words in the associated set of words, the best sense of the target word w is

best sense = argmaxi

N∑

j=1

maxkrelatedness(ti, sjk) (21)

where ti is a sense of the target word and sjk is sense k of the jth context word.

A set of Perl modules called WordNet::SenseRelate::WordToSet has been developed that implements Equa-

tion (21) as an algorithm. This software, like WordNet::SenseRelate::AllWords, is freely available.5

6.4 Identifying the Predominant Sense

McCarthy, et al. [10] proposed a method of discovering the predominant sense of nouns using the semantic

relatedness measures. They note that the first sense method described in the previous section often performs

better than other word sense disambiguation systems that consider the context in which a word occurs.

While the sense numbers assigned to words in WordNet are ordered according to their frequency in SemCor,

many words do not occur in SemCor. In addition, it may be useful to “tune” the first sense heuristic to a

specific domain, such as medical text.

The authors use the semantic relatedness measures in WordNet::Similarity as a part of their algorithm to

identify predominant word senses. The algorithm is based upon a prevalence score that takes into account

a distributional similarity score between a target word and a neighbor of the target word as well as the

semantic similarity score between a sense of the target word and a sense of a neighbor.

The prevalence score for a sense of the target word is

5The software is distributed free of charge and may be modified and/or redistributed under the terms of the GNU General Public

License. The software is available from http://senserelate.sourceforge.net.
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pscore =
∑

nj∈Nw

dss(w, nj) ·
msrs(wsi, nj)∑

ws′

i
∈senses(w) msrs(ws′i, nj)

(22)

where w is the target word, nj is neighbor word j, and wsi is sense i of the target word. The function

senses(w) gives all the senses of word w, dss(w, n) is the distributional similarity score of w and n, and

msrs(wsi, nj) is the maximum semantic relatedness score between sense i of the target word and any sense

of the neighbor word nj (i.e., the relatedness score between wsi and the sense of nj to which wsi is most

related).

The denominator of the fraction is essentially the sum of all the maximum semantic relatedness scores for a

given word sense.

The distributional similarity scores are based on the occurrence of words in a selected corpus. Different

types of corpora can be selected in order to tune the method to different domains. For example, if the

method were to be applied to identifying predominant senses in a medical domain, a corpus of medical text

could be used to determine the distributional similarity scores.

The distributional similarity score measures how often a word w and its neighbor n occur in the same

context. It is defined as

dss(w, n) =

∑
(r,x)∈T (w)∩T (n) I(w, r, x) + I(n, r, x)

∑
(r,x)∈T (w) I(w, r, x) +

∑
(r,x)∈T (n) I(n, r, x)

(23)

where

I(w, r, x) = log
P (x|n ∩ r)

P (x|r)
(24)

where r is a grammatical relation between words w and x. The tuple < w, r, x > represents the occurrence

of w and x in the relation r in a corpus. For example, r could represent a direct object relationship such that

w is the direct object of the verb x. T (w) is a set of co-occurrence types (r, x) where w occurs in relation r

with x.
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6.5 SENSEVAL-2 English All Words

Twenty-two systems competed in the SENSEVAL-2 English All Words competition. Table 22 presents the

results from the systems.6Also shown in the same table are two results from Table 8. The results of the

algorithm in this thesis are competitive with the performance of the entries in SENSEVAL-2. The precision

of the algorithm when used the the Jiang & Conrath measure and a window size of two is .644, which is

better than all but two of the systems. The F Measure score when used with the Adapted Lesk measure and

a window size of 5 is .579, which would have been one of the better systems at SENSEVAL-2.

6.6 SENSEVAL-3 English All Words

Sixteen teams submitted a total of twenty-six systems for the SENSEVAL-3 competition. The results were

reported by Snyder & Palmer [17]. The performance of the systems is shown in Table 23. Once again, the

performance of the SenseRelate algorithm is shown under two different configurations, and the results for

the SenseRelate algorithm are reproduced from Table 9. The precision when using the Jiang & Conrath

measure is better than fifteen of the twenty-six systems, and the overall performance of the algorithm when

using the Adapted Lesk measure is better than about half of the systems.

6The results are available from http://www.sle.sharp.co.uk/senseval2/.
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System name precision recall F Measure

SMUaw .690 .690 .690

CNTS-Antwerp .636 .636 .636

Sinequa-LIA - HMM .618 .618 .618

UNED - AW-U2 .575 .569 .572

UNED - AW-U .556 .550 .553

SenseRelate-lesk-w5 .588 .514 .548

UCLA - gchao2 .475 .454 .464

UCLA - gchao3 .474 .453 .463

CL Research - DIMAP .416 .451 .433

CL Research - DIMAP (R) .451 .451 .451

UCLA - gchao .500 .449 .473

Universiti Sains Malaysia 2 .360 .360 .360

IRST .748 .357 .483

Universiti Sains Malaysia 1 .345 .338 .341

Universiti Sains Malaysia 3 .336 .336 .336

BCU - ehu-dlist-all .572 .291 .386

Sheffield .440 .200 .275

Sussex - sel-ospd .566 .169 .260

SenseRelate-jcn-w2 .644 .162 .259

Sussex - sel-ospd-ana .545 .169 .258

Sussex - sel .598 .140 .227

IIT 2 .328 .038 .068

IIT 3 .294 .034 .061

IIT 1 .287 .033 .059

Table 22: Comparison of SENSEVAL-2 Results
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System name precision recall F Measure

GAMBL-AW-S .651 .651 .651

SenseLearner-S .651 .642 .646

Koc University-S .648 .639 .643

R2D2: English-all-words .626 .626 .626

Meaning-allwords-S .625 .623 .624

Meaning-simple-S .611 .610 .610

LCCaw .614 .606 .610

upv-shmm-eaw-S .616 .605 .610

UJAEN-S .601 .588 .594

IRST-DDD-00-U .583 .582 .582

University of Sussex-Prob5 .585 .568 .576

Univeristy of Sussex-Prob4 .575 .550 .562

University of Sussex-Prob3 .573 .547 .560

DFA-Unsup-AW-U .557 .546 .551

SenseRelate-lesk-w5 .559 .495 .525

KUNLP-Eng-All-U .510 .496 .503

IRST-DDD-LSI-U .661 .496 .567

upv-unige-CIAOSENSO-eaw-U .581 .480 .526

merl.system3 .467 .456 .461

upv-unige-CIAOSENSO2-eaw-U .608 .451 .517

merl-system1 .459 .447 .453

IRST-DDD-09-U .729 .441 .550

autoPS-U .490 .433 .460

clr04-aw .506 .431 .465

autoPSNVs-U .563 .354 .435

merl.system2 .480 .352 .406

SenseRelate-jcn-w2 .604 .213 .315

DLSI-UA-all-Nosu .343 .275 .305

Table 23: Comparison of SENSEVAL-3 Results
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7 Conclusions

The experimental results indicate that the algorithm presented in this thesis is highly competitive with other

all words word sense disambiguation systems. Most other high-performing systems are based on supervised

machine learning algorithms, but the algorithm presented here takes a much different approach since it is

founded on a knowledge base (i.e., WordNet).

The results show that varying the window size in the algorithm does not have a clear, consistent effect. With

the six semantic similarity measures, a small window size tends to result in high precision but low recall,

and increasing the window size reduces precision but boosts recall. Overall, the F Measure tends to increase

slightly as the window size increases for those six measures. These results indicate that a few surrounding

words provide sufficient context.

For the Adapted Lesk measure, there is a similar trend, but the differences are much smaller. A smaller

window does tend to result in higher precision than a larger window, but the differences are small. Similarly,

a larger window results in better recall, but the difference is not large.

For the Vector and Hirst & St-Onge measures, there is no consistent trend. Context vectors have been used

successfully when the vectors are formed from very large corpora. The corpora used for the Vector measure

is the glosses in WordNet, and there may not be enough data for the Vector measure to work optimally. The

measure of Hirst & St-Onge relies on finding lexical chains linking synsets. It is very likely that there are

not enough relations in WordNet to find chains between related word senses.

For some applications, high precision may be more desirable than having good recall. In such a case, a

small window size should be used with the six semantic similarity measures and the Adapted Lesk measure.

In other applications, the overall effect may be more important than having high precision. In that case, a

larger window size should be used with those seven measures.

In applications where high precision is required, the best course may be to use the Jiang & Conrath measure

with a very small window size; however, the Jiang & Conrath measure is only effective with nouns.

If an application demands a balance of precision and recall, then the Adapted Lesk measure should be used.

The Adapted Lesk measure is also best with words that are not nouns.

The six similarity measures have a very clear advantage in terms of execution time. For the SENSEVAL-2
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data, a single run of the algorithm using a similarity measure took less than three minutes.7A single run

of the algorithm with the Adapted Lesk measure took between twenty and ninety minutes. A run using

the Hirst & St-Onge measure typically took between four and nine hours. Finally, a run using the Vector

measure took the longest and required between twelve and twenty-five hours. In all cases, the window size

had a significant impact on execution time because a larger window equates to a significant increase in the

number of semantic relatedness calculations required.

The use of the “fixed mode” has a slight negative effect on accuracy but may have a slight advantage by

reducing execution time. The fixed mode requires fewer calculations of a semantic relatedness score.

This thesis has discussed a number of measures of semantic relatedness and semantic similarity and high-

lighted the strengths and weaknesses of each one. A method of handling multiple inheritance in a taxonomy

for measures of semantic similarity has been presented.

This thesis has presented a method of all words disambiguation that uses measures of semantic relatedness

and requires no training. Software has been developed for this thesis that implements the word sense dis-

ambiguation algorithm, and the software has been used to evaluate the algorithm using almost all known

applicable sense tagged corpora.

7The experiments in this thesis were run on two different machines. Both machines are Linux systems using the 2.4.21 kernel.

One machine has dual Intel Xeon 2 GHz processors and 2 GB of main memory. The second machine has dual Intel Xeon 3 GHz

processors and 3 GB of main memory
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8 Future Work

There is room for improvement in measuring semantic relatedness. As noted earlier in this thesis, the

original measure proposed by Jiang & Conrath was a distance measure, not a similarity measure. Word-

Net::Similarity converts the distance measure into a similarity measure by taking the multiplicative inverse

of the distance (cf. Equation (11)). Equation (12) illustrates an alternative method of converting the original

distance measure into a relatedness measure.

A better smoothing scheme for the information content measures is possible. Instead of using Laplace

smoothing, there are a few other possibilities. One method of smoothing is Lidstone’s law. Lidstone smooth-

ing is similar to Laplace smoothing, but instead of adding one to the frequency count of each possible event,

a value λ is added, where 0 < λ < 1. Often the value for λ is 0.5. One difficulty of this method of smoothing

is choosing an appropriate value for λ.

From the experimental results, it is known that some measures work better than others for certain situations

in word sense disambiguation. The similarity measures, and the Jiang & Conrath measure in particular,

work well when the target word is a noun and there are other nouns in the context window. The Adapted

Lesk measure works with all parts of speech, but the precision is not as high as the precision with the Jiang

& Conrath measure.

A possible improvement would be to allow two or more measures to be used in conjunction to exploit the

strengths of each one. One difficulty is that the measures give very different types of scores, and a score of

1 from one measure has a very different meaning than a score of 1 from another measure (cf. Table 4)

Another improvement to the word sense disambiguation algorithm would be to make the selection of context

words more flexible. Instead of simply using the words directly to the right and left, the algorithm could

allow certain types of words to be selected without strict regard to their position. For example, if the

target word were a noun, the algorithm could select other nouns in a sentence as the context to use when

disambiguating the target word.

A possible use for the measures of semantic relatedness and the word sense disambiguation algorithm is

measuring the similarity of text documents. Considerable work has been done in measuring document

similarity; however, methods for measuring document similarity often rely solely on literal, surface matching
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of text. That is, the methods only search for instances where the identical word is found in two different

documents. These methods miss cases where similar words are used in different documents. For example,

one document may contain the word automobile while another may contain car.

The word sense disambiguation algorithm could be applied to text documents to first disambiguate the

words in the document, then the semantic relatedness measures could be used to find similar word senses

that appear in different documents.
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