
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of master’s thesis by

SIDDHARTH PATWARDHAN

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Dr. Ted Pedersen

Name of Faculty Adviser

Signature of Faculty Advisor

Date

GRADUATE SCHOOL



Incorporating Dictionary and Corpus Information into a

Context Vector Measure of Semantic Relatedness

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Siddharth Patwardhan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

August 2003



Acknowledgments

I would like to take this opportunity to thank a number of people, without whose support and encouragement

this thesis would not have been possible.

Firstly, I would like to thank my advisor Dr. Pedersen for being so thorough and patient, and for seeing me

through this research till the end.

I would like to thank my committee members, Dr. Gallian and Dr. Turner, for going over the thesis so

carefully and for their insightful suggestions.

I would also like to thank Bano, whose work we built upon and who was full of ideas throughout.

I thank my fellow NLP group members – Saif, Bridget and Amruta – for their ideas and suggestions and my

colleague Navdeep for proof-reading and providing her thoughts on the thesis.

I am grateful to Jason Rennie for providing a wonderful interface to WordNet and to Mona Diab for her

feedback on the measures. I am also grateful to Diana Inkpen for her insights on the Vector measure.

Finally, I would also like to thank Linda, Lori, Jim, and the faculty of the Computer Science Department at

UMD for their valuable support and encouragement the past two years.

i



Contents

1 Introduction 1

2 Semantic Relatedness 7

2.1 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Measuring Semantic Relatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Leacock-Chodorow Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 The Resnik Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 The Jiang-Conrath Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 The Lin Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 The Hirst-St.Onge Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.6 Extended Gloss Overlaps as a Measure of Relatedness . . . . . . . . . . . . . . . . 18

3 Measuring Semantic Relatedness Using Context Vectors 20

3.1 Introduction to Context Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 A Measure of Semantic Relatedness based on Context Vectors . . . . . . . . . . . . . . . . 23

4 Experimental Procedure 27

4.1 A Human Relatedness Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 An Application Oriented Comparison of Relatedness . . . . . . . . . . . . . . . . . . . . . 29

5 Description of the Data 33

5.1 The SENSEVAL-2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Corpora for Computing Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



6 Results and Analysis 39

6.1 Human Perception of Relatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Application-Oriented Comparison of the Measures . . . . . . . . . . . . . . . . . . . . . . 43

7 Related Work 46

7.1 Semantic Relatedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 WordNet–based Methods of Word Sense Disambiguation . . . . . . . . . . . . . . . . . . . 48

7.3 Other Approaches to Word Sense Disambiguation . . . . . . . . . . . . . . . . . . . . . . . 49

8 Conclusions 50

9 Future Work 52

9.1 Extending Gloss Overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.2 Refining Gloss Overlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.3 Alternate Approaches to creating Word Vectors . . . . . . . . . . . . . . . . . . . . . . . . 54

9.4 A Principled Approach to Context Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.4.1 Using Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.4.2 Using Lexical Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.5 Use of Semantic Relatedness in Medical Informatics . . . . . . . . . . . . . . . . . . . . . 59

A Spearman’s Rank Correlation Coefficient 60

iii



List of Figures

1 An illustration of synsets and relations in WordNet . . . . . . . . . . . . . . . . . . . . . . 9

2 A schematic of the is-a hierarchy in WordNet . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 A 2-dimensional vector space showing word vectors and a gloss vector . . . . . . . . . . . . 25

4 Example of an instance from SENSEVAL-2 data . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Schematic of the extended gloss overlaps measure . . . . . . . . . . . . . . . . . . . . . . . 53

6 An example of a lexical chain in given context . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



List of Tables

1 Relations between synsets defined in WordNet . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Word pairs used in the human relatedness experiment . . . . . . . . . . . . . . . . . . . . . 28

3 Summary of the lexical sample data set for noun target words . . . . . . . . . . . . . . . . . 35

4 Summary of the lexical sample data set for verb target words . . . . . . . . . . . . . . . . . 36

5 Summary of the lexical sample data set for adjective target words . . . . . . . . . . . . . . . 37

6 Summary of corpora used to compute Information Content . . . . . . . . . . . . . . . . . . 38

7 Correlation between the measures of relatedness and human perception of relatedness . . . . 40

8 Variations in the Correlation Coefficients for the Vector measure . . . . . . . . . . . . . . . 41

9 Variations in the Correlation Coefficients for the measures based on Information Content . . 42

10 Effect of smoothing and counting schemes on Correlation Coefficients for the measures

based on Information Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Comparison of all the measures at WSD on the SENSEVAL-2 noun data . . . . . . . . . . . 44

12 Comparison of three measures at WSD on all of the SENSEVAL-2 data . . . . . . . . . . . . 45

13 An example demonstrating the usage of Spearman’s Correlation Coefficient . . . . . . . . . 60

v



Abstract

Humans are able to judge the relatedness of words (concepts) relatively easily, and are often in

general agreement as to how related two words are. For example, few would disagree that “pencil” is

more related to “paper” than it is to “boat”. Miller and Charles (1991) attribute this human perception

of relatedness to the overlap of contextual representations of words in the human mind, and there is at

least some understanding of how humans are able to perform this task. However, it remains an open

question as to how to create automatic computational methods that assign relatedness values or scores

to pairs of concepts. A number of measures of relatedness have been proposed, most of them relying

on information taken from the lexical database WordNet, and possibly augmented with corpus based

statistics.

In this thesis we study a number of such measures, and offer various refinements to those proposed

by Resnik (1995), Jiang and Conrath (1997) and Lin (1998). We then compare these measures along

with three others in the context of a human relatedness study and in word sense disambiguation experi-

ments. We find that the measures of Jiang and Conrath (1997) and Banerjee and Pedersen (2003) offer

various advantages. With these results in mind, we propose and evaluate a new measure based on context

vectors that combines the content of dictionary definitions with statistical information derived from large

corpora. This measure is unusually flexible and robust, in that it does not depend on the structure of any

particular dictionary, and it can incorporate information derived from any given corpus of text.
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1 Introduction

Semantic relatedness refers to the degree to which two concepts are related (or not). Humans are able to eas-

ily judge if a pair of concepts are related in some way. For example, most would agree that paper and pencil

are more related than are car and toothbrush. This thesis examines the question of how semantic relatedness

can be approached from a computational point of view, and results in a new measure of relatedness that will

be shown to be both effective and adaptable.

There is, no doubt, a deep psychological explanation behind human perceptions of relatedness. While the

exact nature of this remains a fascinating question, in this thesis we consider semantic relatedness from a

more practical point of view. We try to observe how humans use this notion in their everyday lives. Knowing

what concepts are related (or not) may be considered a part of a human’s common sense, which is used in

nearly every aspect of human thought and action. For example, consider the following sentence: My son

loves baseball, so I got him a bat and glove. A combination of common sense and domain knowledge about

sports makes it clear that the bat being referred to is one that is used to hit balls, and is not associated with

the well known mammal. These are the kinds of problems that humans solve quickly and without a great

deal of conscious thought, based on a combination of their real world knowledge and common sense.

The reader may well wonder that if it were possible to develop computer programs made the same kinds

of determinations, could we someday talk to computers, the way we do with humans? No one can answer

that just yet, but a reasonable question might be the following: can we automate and quantify semantic

relatedness, so as to correspond with human judgment? The answer to this question, based on previous

research and this thesis, is a qualified yes.

However, this is a challenging problem. There are a wide range of different ways that concepts can be

related, and it may require a certain amount of specialized knowledge to realize such cases. For example,

on first reflection the automotive sense of tire and the shade-giving type of tree may not seem to be related.

However, if one is aware that tires are made of rubber, and rubber comes from trees, then they may be

more related than first realized. In addition, humans are not always in complete agreement on relatedness

judgments, since these can be affected by uniquely personal experiences. For example, a particular person

may consider tree and car to be highly related because that person parks her car under a big tree everyday.

Despite the caveats issued above, it is still reasonable to say that humans are largely in agreement on the
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semantic relatedness of concepts. This has been verified by several repetitions of human studies across a

number of years, and we utilize the results of such experiments when evaluating our computational work.

Before proceeding, we must clarify the relationship between words, concepts and word senses. Concepts are

real world objects, notions or ideas that are represented in text or speech by words. For example, the concept

of a stone would be represented by the word stone. In addition, it may well be represented by the word rock

or pebble. Hence, the same concept may be represented by different words. Also, the concept need not be

a solid object. It could be an abstract thing, like art, or an action, like walking. Each such concept has a

number of words that represent it. Not only that, but a single word may represent a number of concepts.

For example, the word bank could mean the financial institution concept or the river bank concept. The

different meanings of a word are known as word senses. A word could, therefore, correspond to a number of

concepts, while a word sense corresponds only to a single concept. Due to this equivalence of word senses

and concepts, in this thesis we use the terms concepts and word sense interchangeably.

The reader may have noted that in our previous examples, dealing with semantic relatedness and human

perception of relatedness, we have been showing words in the text but then referring to the relatedness of

concepts or of word senses. This is simply a convenience. In general, measures of relatedness focus on

underlying concepts or word senses, and when a pair of words are presented in work such as this, it is

presumed that the obvious senses are intended (unless otherwise indicated). For example, if we present the

example pair bank and money, we would presume that we are referring to the most obvious senses, which

are likely the financial ones.

Concepts may be related by virtue of being similar in appearance or function (e.g., chair and stool), being

opposites (e.g., rich and poor), or having some other defined relationship between them, such as one concept

being a a type of or a part of the other. For example, a penguin is a type of bird, and a beak is a part of

a penguin. However, two concepts can be related without there being a defined relationship between the

words. They may be considered highly related if they just happen to occur together very often in everyday

use. For example bargain and book may be considered related, simply because the collocation bargain book

is relatively common.

A number of measures of semantic relatedness have been developed and evaluated by different researchers,

and this thesis will review and discuss some of the most significant of these. In addition, this thesis will

show several refinements to these existing measures, present a new task oriented measure of evaluation, and
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conclude with the presentation of a new measure of semantic relatedness.

However, before we go into the gory details of what we did and how we did it, we would like to explore

a bit further the question of why we have worked on this problem. Apart from the importance of semantic

relatedness in cognitive sciences and psychology, it has a number of significant applications in Natural Lan-

guage Processing. For example, semantic relatedness of words can be effectively used for query expansion

in improving information retrieval. Suppose a user has requested information about New York City rental

property. If the system knows that apartments are a form of rental property, then the query can be modified

such that this additional terminology is employed. Document clustering based on content also provides a

direct application. Here a measure of the semantic relatedness of the content of different documents could

be used to cluster them into semantically related groups.

In this thesis we will review various measures that are based on the lexical database WordNet [8]. Some

measures extend WordNet’s content with statistical information derived from large corpora, while others

employ different aspects of WordNet’s structure and content.

With various measures of semantic relatedness available, a major challenge has been to find a reasonable

basis for their comparison. Budanitsky and Hirst [6] compare the performance of several measures of

relatedness with the results of human studies of semantic relatedness that have been previously published.

Due to the relatively small number of human studies that have been conducted (due to the expense and

difficulty of arranging such an effort), we refer to the same body of previous work. In particular we rely

upon the landmark Rubenstein and Goodenough [25] study from 1965, and the later replication of those first

results by Miller and Charles [19] in 1991.

Both Budanitsky and Hirst and this thesis find that automatic computational measures perform relatively

well when compared to human judgment. In addition, Budanitsky and Hirst suggest the study of the impact

of different measures of relatedness when applied to a real world problem. In their case they chose spelling

correction. We follow their lead, and present an novel means of comparing measures of relatedness. We have

devised a method of word sense disambiguation that can be used as the basis for carrying out an extensive

comparison of these measures, and this thesis also presents the results of that study.

Word sense disambiguation is the problem of selecting the most appropriate meaning or sense of a word,

based on the context in which it occurs. While this is usually an easy task for a human, it is a challenging
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problem for a computer program since a machine does not have the benefit of a lifetime of experience nor

does it have a deep knowledge of language. We evaluated different measures of relatedness via an adaptation

of the famous Lesk [15] algorithm for word sense disambiguation.

This is a method that uses dictionary definitions (or glosses) of surrounding words to determine the correct

sense of a particular word. From this point forward we will refer to the word to be disambiguated as the

target word, and the surrounding words in the text as the context. According to the Lesk Algorithm the sense

of the target word whose dictionary definition has the maximum overlap of words with definitions of senses

of other words in the context is the sense that is selected as the intended sense of the target word.

The basic hypothesis underlying Lesk’s method for word sense disambiguation is that the sense of the

target word should be related to the other words in the context, and that the degree of relatedness can be

captured via a measure based on gloss overlaps. Banerjee and Pedersen [3] extend Lesk’s algorithm to

extend the dictionary definitions with additional definitions from concepts found in the rich network of

word sense relations in WordNet. This thesis demonstrates that the Lesk framework does not depend on

using gloss overlaps as a measure of relatedness, and in fact any measure of relatedness can be used to carry

out disambiguation. It was this observation that allows us to carry out the comparative study of different

measures of relatedness as applied to disambiguation of the SENSEVAL-2 data, which will be discussed in

more detail later.

However, by way of summary we compared the following six measures of relatedness to see how well they

fared in comparison with human relatedness perception and with respect to word sense disambiguation:

� the Resnik measure [24],

� the Lin measure [16],

� the Jiang-Conrath measure [12],

� the Leacock-Chodorow measure [14],

� the Hirst-St.Onge measure [10], and

� extended gloss overlaps [4].
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(The first five measures mentioned above were the object of the study by Budanitsky and Hirst, mentioned

earlier in this section.)

We found that Banerjee and Pedersen’s measure of extended gloss overlaps fared well in both evaluations.

However, we have some reservations about measures based strictly on the contents of a dictionary. Glosses

or definitions of words are not meant to be complete descriptions of the concepts represented by the words.

They contain a minimal description of the different senses of a word. Therefore, measuring relatedness by

counting the word overlaps in the dictionary definitions is highly sensitive to the size of the definitions and

to the dictionary used.

We believe that gloss based measures of relatedness could be improved upon by augmenting the defini-

tions with data derived from large corpora of text. This belief is supported by the observation that the

other measure that fared well in our comparative studies was that of Jiang and Conrath [12]. This measure

uses statistics from a large corpus in the form of information content of word senses in addition to taking

advantage of the structure of the is-a hierarchy in WordNet.

Due to the success of both extended gloss overlaps and the measure of Jiang and Conrath, this thesis creates

a new measure of semantic relatedness that represents each word sense as a multidimensional vector of

word frequencies. We build the multidimensional vectors based on the notion of context vectors described

by Schütze [26]. These vectors combine dictionary definitions of the word senses with co-occurrence data

from a large corpus. Semantic relatedness is then measured simply as the nearness of the two vectors in the

multidimensional space (the cosine of two normalized vectors). One of the strengths of this measure is that,

although our implementation of the measure is tied with WordNet, the basic idea of the Vector measure can

be used with any dictionary. Also, this measure is not restricted by any particular part of speech and can find

the relatedness between concepts from any part of speech.

After developing our measure we re-did the previously mentioned comparative experiments. We compared

the six measures with respect to the human perception of semantic relatedness and within a word sense

disambiguation task. Our results show that the Extended Gloss Overlaps measure and the Vector measure

correspond very closely to the human perception of semantic relatedness. We found that the new Vector

measure did not fare quite as well in the word sense disambiguation task, but we believe that there are

reasonable explanations for that and are optimistic that these results will improve.
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To summarize briefly, this thesis has resulted in the following contributions to computational measures of

semantic relatedness.

1. In cooperation with Banerjee, we cast the extended gloss overlap technique as a measure of related-

ness.

2. We extended the Adapted Lesk Algorithm of Banerjee and Pedersen such that any measure of relat-

edness can be used to carry out disambiguation.

3. We carried out an extensive and novel evaluation that assessed the effectiveness of six different mea-

sures of relatedness when applied to word sense disambiguation.

4. We refined the measures of Resnik, Jiang–Conrath, Lin and Hirst and St. Onge in order to include

them in the just mentioned comparative study.

5. Based on the results of our comparative studies, we created a new context vector based measure that

combines corpus data with dictionary definitions. The new measure is independent of any part of

speech restrictions and can be implemented independent of the dictionary used.

6. We conducted a second set of comparative experiments relative to human relatedness and word sense

disambiguation in order to evaluate the Vector measure. We find that the Vector measure performs

exceptionally well relative to human relatedness, and reasonably well at word sense disambiguation.

7. We have released (via the CPAN archive) a freely available software package that implements all of

the measures of relatedness discussed here.
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2 Semantic Relatedness

Measuring the semantic relatedness of concepts is an intriguing problem in Natural Language Process-

ing. Various approaches that attempt to approximate human judgment of relatedness, have been tried by

researchers. In this section we look at a few WordNet–based measures of semantic relatedness that we pro-

pose to compare. Approaches to measuring semantic relatedness that we have not experimented with in this

thesis are discussed in the section on related work (section 7).

It is important to note that, although semantic similarity and semantic relatedness are sometimes used inter-

changeably, the term relatedness is more general than similarity. Budanitsky and Hirst [6] discuss this point

and they say that similarity usually refers to concepts that are related because they look alike. For example,

table is similar to desk. On the other hand, dissimilar concepts like wheel and spoke may be semantically

related. In this thesis, we deal with measures of semantic relatedness.

Before we delve into the intricacies of measuring semantic relatedness, a quick introduction to WordNet is

in order, since all the measures described here are based on WordNet.

2.1 WordNet

The creators of WordNet refer to it as an electronic lexical database [8]. This is a convenient but over–

simplified description of a very complex resource. WordNet can be visualized as a large graph or semantic

network, where each node of the network represents a real world concept. For example, the concept could

be an object like a house, or an entity like a teacher, or an abstract concept like art, and so on.

Every node consists of a set of words, each representing the real world concept associated with that node.

Thus, each node is essentially a set of synonyms that represent the same concept. For example, the concept

of a car may be represented by the set of words �car, auto, automobile, motorcar�. Such a set, in WordNet

terminology, is known as a synset. A synset also has associated with it a short definition or description of the

real world concept known as a gloss. The synsets and the glosses in WordNet are comparable to the content

of an ordinary dictionary.

What sets WordNet apart is the presence of links between the synsets – the edges of the graph mentioned

above. Each link or edge describes a relationship between the real world concepts represented by the synsets
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Table 1: Relations between synsets defined in WordNet

Relation Description Example

Hypernym is a generalization of furniture is a hypernym of chair

Hyponym is a kind of chair is a hyponym of furniture

Troponym is a way to amble is a troponym of walk

Meronym is part/substance/member of wheel is a (part) meronym of a bicycle

Holonym contains part bicycle is a holonym of a wheel

Antonym opposite of ascend is an antonym of descend

Attribute attribute of heavy is an attribute of weight

Entailment entails ploughing entails digging

Cause cause to to offend causes to resent

Also see related verb to lodge is related to reside

Similar to similar to dead is similar to assassinated

Participle of is participle of stored (adj) is the participle of “to store”

Pertainym of pertains to radial pertains to radius

that are linked. For example, relationships of the form “a vehicle is a kind of conveyance” or “a spoke is

a part of a wheel” are defined. Other relationships include is opposite of, is a member of, causes, pertains

to, etc. Table 1 shows the list of relations defined in WordNet. The network of relations between word

senses present in WordNet encodes a vast amount of human knowledge. This gives rise to a great number

of possibilities in the way it could be used for various Natural Language Processing (and other) tasks.

Figure 1 focuses on a small portion of the structure of WordNet and illustrates the nodes and edges of the

semantic network just described.

The synsets in WordNet are divided into four distinct categories, each corresponding to four of the parts

of speech – nouns, verbs, adjectives and adverbs. Most of the relationships defined between the synsets

are restricted to a particular part of speech and do not cross part of speech boundaries. Exceptions are the

pertains to and attribute relationships that exist between adjectives and nouns. Thus, the set of relations

defined on the synsets in WordNet, divide them into four almost disjoint regions.
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= relationship

= other relationships

= synset

= glossdescription of node

{word1, word2, ...}

A large artillery gun
that is usually on wheels

{cannon}

the handle of a handgun or the butt end
of a rifle or shotgun or part of the support
of a machine gun or artillery gun

{stock, gunstock}

{artillery, heavy weapon, gun, ordnance}

Large, but transportable, armament

Weaponry used by military
or naval force

{armament}

operated together at one place

{battery}

group of guns or missile launchers

has−part

has−part

is−a

is−a

Figure 1: An illustration of synsets and relations in WordNet

One of the relations in WordNet of interest to us, mainly because of its structure and utility in measuring

semantic relatedness, is the is a kind of relationship or simply is a. This relationship between synsets is

restricted to nouns and to verbs. This relation organizes the noun and verb synsets into large hierarchies

or trees. Each tree has a single root node. The more general concept nodes are ancestors of more specific

concept nodes. We say that the more general concepts subsume the more specific concepts. For instance,

entity is the most general concept in one of the noun hierarchies and is the root node of the tree. It subsumes

other more specific concepts such as furniture, bicycle, etc, which are lower down in the tree. Similarly,

furniture may subsume other concepts such as those of chair or table. There exist 9 such hierarchies in the

WordNet nouns, while there are about 628 hierarchies for verbs. The large number of hierarchies in verbs is

due to the fact that the verb hierarchies are, on average, much shorter and broader than the noun hierarchies.

The average depth of the noun hierarchies is about 12.5 nodes, while that of the verb hierarchies is about 2.3

nodes. Each of the verb hierarchies, therefore, covers a much smaller portion of the synsets, as compared to

the noun hierarchies. This makes the verb hierarchies a lot less effective in the relatedness measures that we

describe later in the section. Figure 2 shows an example of the is-a hierarchy in WordNet.
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entity, physical thing

object, physical object

natural object
artefact, artifact

enclosure surface
mechanismplant part

carrot radish

plant organ
mechanical device

sprinkler

cage, coop

birdcage hutch

squirrel cage

skin

= is−a relationship
= other children

plant root

Figure 2: A schematic of the is-a hierarchy in WordNet

For all our experiments we used version 1.7.1 of WordNet.

2.2 Measuring Semantic Relatedness

Given the vast store of human knowledge encoded in WordNet, it has been used by many researchers in

developing measures of semantic relatedness. Some use only the structure and content of WordNet to mea-

sure semantic relatedness. Other approaches combine statistical data from large corpora with the structure

of WordNet to give us a score of semantic relatedness.

2.2.1 The Leacock-Chodorow Measure

An intuitive method to measure the semantic relatedness of word senses using WordNet, given its tree-like

structure, would be to count up the number of links between the two synsets. The shorter the length of

the path between them, the more related they are considered. Such a measure had been experimented with
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by Rada et al [23] for measuring semantic relatedness of medical terms, using a medical taxonomy called

MeSH. Their measure performed rather well. A measure suggested by Leacock and Chodorow [14] does

almost this, using WordNet. The measure suggested by Leacock and Chodorow considers only the is a

hierarchies of nouns in WordNet. Since only noun hierarchies are considered, this measure is restricted to

finding relatedness between noun concepts. The noun hierarchies are all combined into a single hierarchy

by imagining a single root node that subsumes all the noun hierarchies. This ensures that there exists a path

between every pair of noun synsets in this single tree. To determine the semantic relatedness of two synsets,

the shortest path between the two in the taxonomy is determined and is scaled by the depth of the taxonomy.

The following formula is used to compute semantic relatedness:

�������������� ��� � ��	


�
��	������������ ���

� ��

�
(1)

where �� and �� represent the two concepts, ��	������������ ��� specifies the length of the shortest path

between the two synsets �� and ��, and � is the maximum depth of the taxonomy. For WordNet 1.7.1, the

value of � turns out to be 19.

This method assumes the size or weight of every link in the taxonomy to be equal. This is a false assumption.

It is observed that lower down in the hierarchy, concepts that are a single link away are more related than

such pairs higher up in the hierarchy. This simple approach, however, does relatively well, despite its lack

of complexity.

Some highly related approaches attempt to overcome this disadvantage of simple edge counting by aug-

menting the information present in WordNet with statistical information from large corpora.

2.2.2 The Resnik Measure

Statistical information from large corpora is used to estimate the information content of concepts. The idea

of information content was introduced by Resnik [24], in his paper that describes a novel method to compute

semantic relatedness.

In brief, information content of a concept measures the specificity or the generality of that concept, i.e. how

specific to a topic the concept is. For example, a concept like sprinkler is a highly topical concept and would

have high information content. On the other hand, a more general concept such as artifact would have a

much lower information content.
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Computation of information content is based on the subsuming property of the is a hierarchy. Suppose we

come across concept �� in a discourse, which is subsumed by concept �� in the is a hierarchy of WordNet.

Then the occurrence of concept �� in the text implies the occurrence of �� in the text, which is explained

by the fact that �� is a kind of ��. For example, suppose we come across the concept chair in a given text.

Because chair is a kind of furniture, we can always say that text contains the concept of furniture. And

further, without being wrong, we can say that it speaks of an object. Thus, chair, furniture and object all

represent the same concept in the text at varying degrees of specificity.

To find information content we first compute the frequency of occurrence of every concept in a large corpus

of text. Every occurrence of a concept in the corpus adds to the frequency of the concept and to the frequency

of every concept subsuming the concept encountered. We note that by this process the root node includes the

frequency count of every concept in the taxonomy. It is incremented for every occurrence of every concept

in the taxonomy.

Counting of concepts from a corpus is, however, not as trivial as described. The inherent ambiguity of words

poses the problem in determining the occurrence of concepts in the corpus. Unless we have a sense-tagged

corpus, we will not be able to tell if the occurrence of the word bank in the corpus refers to the financial-

institution sense of bank or to the river-bank sense of bank or to some other sense of bank. In other words,

each word sense refers to a unique concept, and words can have multiple senses.

Resnik overcomes the problem of ambiguity by distributing the count of a word over all senses of the word.

Thus, if the word bank is encountered 50 times in the text and bank has 10 senses in WordNet, then each of

these 10 concepts would receive a count of 5. This assumes an equal distribution of the senses in text.

In this thesis we introduce a different method of counting concept frequencies and compare the effect of our

counting to that of the Resnik counting. In our method of counting, rather than distributing the frequency

count of a word across its senses, we assign that count itself to all the senses. In the preceding example,

using our counting, each of the 10 senses of bank would receive a count of 50 instead.

The primary reason for using a different counting scheme from the one described by Resnik is that in the

Resnik counting we observe that by distributing the word counts across the senses of the word, we assign

higher relative frequencies to words having fewer senses.

Information content is defined as the negative logarithm of the probability of occurrence of the concept in a
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large corpus. Thus, with these frequency counts computed from a large corpus, we arrive at the following

formula for information content:

����� � ��	


�
�������

������		��

�
(2)

where ����� is the information content of concept �, �		� is the root node of the taxonomy and ������� and

������		�� are the frequency counts of these concepts.

Another issue that had to be addressed was that of 0 frequency counts. If � had a frequency count of 0

in the above formula, we would end up with an undefined information content value. We handle this in

two ways. The first is to allow information content to have a value of 0 and then have the measures have

special handling for an information content value of 0. The second was to smooth the frequency counts. We

use add-1 smoothing and compare the effects of the two methods. Smoothing is a way of assigning small

non-zero frequency values to concepts not observed in a corpus of text. In add-1 smoothing, a value of 1 is

added to the frequency of occurrence of each of the concepts. This causes the concepts not observed in a

corpus to have a small non-zero frequency.

Resnik defines the semantic relatedness of two concepts as the amount of information they share in common.

He goes on to elaborate that the quantity of information common to two concepts is equal to the information

content of their lowest common subsumer – the lowest node in the hierarchy that subsumes both concepts.

For example, in figure 2 the lowest common subsumer of carrot and radish is plant root, while that of carrot

and birdcage is object.

�������������� ��� � ���������� ���� (3)

where �� determines the information content of a concept and ������� ��� finds the lowest common sub-

suming concept of concepts �� and ��.

The Resnik measure depends completely upon the information content of the lowest common subsumer of

the two concepts whose relatedness we wish to measure. It takes no account of the concepts themselves.

This leads to somewhat “coarser” relatedness values. For example, the concept pair car and bicycle will

have the same measure of semantic relatedness as the pair car and all terrain bicycle because both pairs of

concepts have the same lowest common subsumer.

This measure has a lower bound of 0 and no upper bound.
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2.2.3 The Jiang-Conrath Measure

A measure introduced by Jiang and Conrath [12] addresses the the limitations of the Resnik measure. It

incorporates the information content of the two concepts, along with that of their lowest common subsumer.

The measure is a distance measure that specifies the extent of unrelatedness of two concepts. It combines

features of simple edge counting with those of information content introduced in the Resnik measure. The

Jiang–Conrath measure is given by the formula:

��������������� ��� � ������ � ������� �� � ���������� ����� (4)

where �� determines the information content of a concept and ��� determines the lowest common subsum-

ing concept of two given concepts.

For the purpose of our experiments, to maintain a scale where a value of 0 indicates unrelated concepts, we

invert the value to make it a measure of semantic relatedness.

�������������� ��� �
�

��������������� ���
(5)

The relatedness would be undefined if there was a 0 in the denominator, which can happen in two special

cases:

1. The first case:

������ � ������ � ���������� ���� � � (6)

���������� ���� can be 0 if the lowest common subsumer turns out to be the root node, since the

information content of the root node is zero. ������ and ������ would be 0 only if the two concepts

have a 0 frequency count, in which case, for lack of data, the measure returns a relatedness of 0. ��

and �� can never be the root node, since the root node is a virtual node created by us and doesn’t really

exist in WordNet.

Thus, in this case we return a relatedness score of 0, indicating insufficient data to assess the related-

ness of �� and ��.

2. The second case in which we may have to handle a 0 in the denominator is when

������ � ������ � � � ���������� ���� (7)

14



which is more likely to occur in the special case

������ � ������ � ���������� ���� (8)

This usually happens when ��, �� and ������� ��� turn out to be the same concept.

Intuitively this is the case of maximum relatedness (zero distance), and simply returning a relatedness

score of 0, indicating unrelated concepts, would not be right. A more reasonable option is to return an

arbitrarily high value, signifying maximum relatedness. But the difficulty is of selecting such a value.

In this thesis, this case is handled by finding the smallest ����������� greater than 0. This value

indicates the maximal relatedness or minimal non-zero distance. To find this value of �����������,

consider equation (4). Here the value of ����������� is 0 when we have condition specified in equation

(8). Now, consider the case that ������ � ���������� ����, but ������ is just slightly greater than

������. We want to find the value of distance corresponding to such a case and this would be the

value of distance just above 0. From equation (2) we have

������ � ��	


�
��������

������		��

�
(9)

For ������ to be just slightly more than ������, we reduce �������� in the above formula (equation

(9)) by 1. Suppose, � is the original frequency of �� (and of �� and ������� ���), then with the reduced

frequency, ������ becomes

������ � ��	
��� � �����		
� (10)

and we have

������ � ���������� ���� � ��	
�����		
� (11)

Since frequency is counted in integers, this is the closest ������ could be to ������. We then have

����������� � ������ � ������� �� � ���������� ����� (12)

� ������ � ������� �� � ������� � � � �	
�� ������ � ���������� ���� (13)

� ������� ������ (14)

� ��	
��� � �����		
� � �	
�����		
� (15)
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Now, suppose we let �� and �� be the root node, for this computation.

����������� � ��	
����		
 � �����		
� � �	
���		
���		
� (16)

� ��	
����		
 � �����		
� � �	
��� (17)

� ��	
����		
 � �����		
� (18)

Equation (18) specifies the value of distance that is almost equal to zero. We use this value of “almost

zero distance” in the equation for relatedness (equation (5)).

This measure works only with WordNet nouns, has a lower bound of 0 and no upper bound. But we have

created an artificial upper bound on the measure in this thesis.

2.2.4 The Lin Measure

Another measure, based on information content of concepts, is described by Lin [16]. The measure is given

by:

�������������� ��� �
� � ���������� ����

������ � ������
(19)

For this measure, we have special handling for 0 information content values, since a 0 in the denominator

in the above formula would give us an undefined relatedness value. We simply return a relatedness value of

0 if either of the two concepts have an information content of 0. This is because, neither �� nor �� can be

the root node. So their having an information content of 0 implies a lack of data (no frequency count for the

concept).

This measure has a lower bound of 0 and an upper bound of 1.

The information content based measures described here, though closely related, give surprisingly different

results.

2.2.5 The Hirst-St.Onge Measure

Hirst and St.Onge [10] also use the rich content of WordNet to define relatedness between words. Note

that this measure, reports the relatedness between words and not between word senses or concepts. In this
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thesis, we modify this relation, so that it becomes a measure of relatedness of concepts. Unlike the above

measures that considered only the is a hierarchy of nouns, the Hirst-St.Onge measure actually considers all

the relations defined in WordNet. All links in WordNet are classified as Upward (e.g. part-of), Downward

(e.g. subclass) or Horizontal (e.g. opposite-meaning). Further, they also describe three types of relations

between words - extra-strong, strong and medium-strong. Any two words are related by one of these types

of relations if they conform to certain rules summarized below.

Extra-strong relations are defined between two instances of the same word. Observe that this specifies a

relationship between surface forms of words. Since we are dealing with the semantic relatedness of word

senses, we do not consider this category of relations in our experiments.

Two words are related by a strong relation under the following conditions.

� If the two words belong to the same synset in WordNet. For example, car and automobile.

� If the two words belong to two synsets connected by a horizontal link in WordNet. For example, two

words that are opposite in meaning, such as hot and cold have a horizontal link between them.

� If one word is a compound word, the second word is part of the compound word and there exists

an is-a relation between the synset of the first word and that of the second word in WordNet. For

example, school and private school have such a relationship.

We assign a score of � � � to an occurrence of this relation. � is a constant used in the formula for the

scoring of a medium-strong relation. Hirst and St.Onge use 8 as a value for � in their experiments.

A medium-strong relation is defined between synsets connected by a path in WordNet that is not too long and

has relatively few changes in direction. The upward, downward and horizontal classification of WordNet

relations described earlier in this section, indicate the direction of the relations. The weight of any medium

strong path is given by

���
�� � � � ���� ���
��� � � ����
�� �� �������	� (20)

where �, � are constants. Medium-strong relations have some additional restrictions regarding the direction

that the path may follow. The path between two words with the lowest weight is the one always considered.

These three types of relations describe the degree of relatedness of words.
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In this thesis we use values of � �  and � � � in equation (20). These were the values used by Hirst and

St.Onge for their experiments. This sets a lower bound of 0 and an upper bound of 16 on the measure.

2.2.6 Extended Gloss Overlaps as a Measure of Relatedness

Lesk [15] defines relatedness in terms of dictionary definition overlaps of concepts. He describes an algo-

rithm that disambiguates words based on the extent of overlaps of their dictionary definitions with those of

words in the context. The sense of the target word with the maximum overlaps is selected as the assigned

sense of the word. The hypothesis that dictionary definition overlaps can measure semantic relatedness

underlies this algorithm.

Banerjee and Pedersen [3] adapt the Word Sense Disambiguation algorithm, described by Lesk [15], to

WordNet. Since the Lesk algorithm was algorithm was designed before the creation of WordNet, it was

mainly based on traditional dictionaries. Banerjee and Pedersen enhance the Lesk algorithm with the rich

source of knowledge present in WordNet. The algorithm proceeds by taking each of the words in the context

of the ambiguous word and considers the glosses of all words connected to these by various WordNet rela-

tions. The overlap of each of these glosses with glosses of words connected to each sense of the ambiguous

word is determined and is used to compute a score for these senses. The sense with the highest score is the

selected.

In this thesis, we propose that this adaptation of Banerjee and Pedersen, in fact, can be thought of as a

measure of semantic relatedness. It is called the extended gloss overlaps measure. This method scores a pair

of glosses by finding the number of word strings that are common to the two extended glosses. Multiple

word matches are scored higher than single word matches. This is done by adding the square of the number

of consecutive words matched, to the score of the gloss pair. For example, if the string space shuttle occurs

in two glosses, 4 is added to the score of the gloss pair, for this two word string match.

This measure is called the extended gloss overlap measure, because rather than specifying the relatedness as

the score of the glosses of the two concepts alone, the glosses of words related to the concepts are taken into

consideration. This process is described in a little more detail below.

Consider the first of the two concepts �� and a set �� of glosses corresponding to �� (initially empty). The

gloss of concept �� is added to the set ��. A gloss is identified corresponding to each of the WordNet
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relations. For a WordNet relation �, a gloss is created by concatenating the glosses of all concepts related to

�� by relation �. All such glosses (corresponding to all the WordNet relations) are added to set ��. Similarly

we create a set �� for the second concept ��.

To find the relatedness of �� and ��, gloss overlap scores for each gloss in �� with each gloss in �� are added

and the sum is the semantic relatedness of concepts �� and ��. This is precisely what is done by Banerjee

and Pedersen in their adaptation of the word sense disambiguation algorithm.

This measure has a lower bound of 0 and no upper bound.
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3 Measuring Semantic Relatedness Using Context Vectors

We conducted some preliminary experiments [21] to compare the measures of semantic relatedness de-

scribed by Resnik [24], Jiang-Conrath [12], Lin [16], Leacock-Chodorow [14], Hirst-St.Onge [10] and

Banerjee-Pedersen [4]. On analyzing the results we found that the information content based measure de-

scribed by Jiang and Conrath and semantic relatedness based on extended gloss overlaps (Banerjee and

Pedersen) fared the best in a Word Sense Disambiguation task.

As described in section 2, the Jiang-Conrath measure uses the knowledge from a large corpus in the form

of information content of word senses. This knowledge is used in conjunction with the rich network of

relationships between word senses provided by WordNet, to assign a quantitative value to the semantic

relatedness of word senses.

The extended gloss overlap measure of Banerjee and Pedersen, on the other hand, uses an entirely different

technique of measuring the extent of overlap of WordNet definitions of word senses. It is not assisted, in

any way, by an additional knowledge source like a large corpus.

Even though both the measures do quite well, we note that the Extended Gloss Overlap measure suffers from

the disadvantage that it is dependent on exact matches of words. Thus, the presence of a content word like

spoon in two glosses would contribute to their overlap score. However, if one of the two glosses contained

spoon and the other contained spoons, the overlap would be missed. Conceptual matches like spoon and

silverware would not even be considered.

In order to overcome this disadvantage of the extended gloss overlaps measure, we consider ways of aug-

menting the words in the glosses with data from external sources. We use an alternate representation and

an alternate matching scheme of WordNet concepts that is not as short and not as exact as a WordNet gloss,

but describes the concept in a broader sense. Some work by Schütze [26] and Inkpen and Hirst [11] gives us

some direction towards such a representation. Like the Extended Gloss Overlaps measure, it works on all

parts of speech and like the Jiang-Conrath measure it takes advantage of corpora.
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3.1 Introduction to Context Vectors

Schütze introduces a unique application of context vectors in his paper on Automatic Word Sense Discrimi-

nation [26]. Such multidimensional vectors of word frequencies have been traditionally used in Information

Retrieval. Schütze uses them in Word Sense Discrimination, which is the process of clustering together

passages of text, each of which contain an instance of a particular ambiguous word. Clusters are formed

such that the each cluster contains all those passages with the same sense of the target (ambiguous) word.

This process is one step short of Word Sense Disambiguation, since an actual sense is not assigned to the

members of the cluster. In word sense discrimination, we are able to say whether two instances of the target

word are used in the same sense, but we are unable to say what they mean.

In order to perform word sense discrimination, Schütze represents passages of text as vectors in a multidi-

mensional space. His algorithm is based on a hypothesis by Miller and Charles [19], that humans determine

the similarity in the meanings of words from their contexts. For example, consider the sentences “He filed

a suit in court” and “He wore the new suit to the party”. We are easily able to tell from the words preceding

and following (i.e. from the context of) the word suit in the two sentences that the two instances of the word

suit have entirely different meanings. In the first instance, the presence of the noun court and the verb file

motivates us to believe that the word suit in the sentence alludes to a law-suit. Similarly, the words wore,

new and party ascertain that, in the second sentence, the word suit speaks of clothing. We could convince

ourselves that the the word suit in the first sentence would be closely related to a word like judge, since

both are more likely to have similar words (i.e. legal terms) around them in sentences. This supports the

hypothesis by Miller and Charles of the similarity in meanings of words being determined by their contexts.

Schütze uses this notion by representing the context of the words using vectors mapped into a multidimen-

sional space. The dimensions of this space are defined by the number of words present in a “word space”.

The word space is just a list of words used to form the vectors. The words in the word space are selected

either by using a frequency cut-off or by using the �� test of association on a corpus of text. In order to

represent the multidimensional space word vectors, context vectors and sense vectors are introduced. Every

word in the word space has a corresponding word vector. The word vector corresponding to a given word

is calculated as a vector of integers. The integers are the frequencies of occurrence of each word from the

word space in the context of the given word in a large corpus. Thus, each word in the word space represents

a dimension of the vector space.
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Once the word vectors for all words of the word space are calculated, these are then used to calculate the

context vectors for every instance of the ambiguous word. This is done by calculating the resultant vector

of the word vectors of all words in the context of the ambiguous word.

The context vectors are then clustered using a clustering algorithm and a sense vector for each cluster is

calculated as the centroid of context vectors of that cluster. We observe that context vectors can be easily

used to create a metric that measures “distances” between words based on their meanings from their contexts.

We also note that the context vectors represent the meaning of the ambiguous words in their contexts. We

would, therefore, expect the context vectors of all the ambiguous words having the same sense to have

approximately the same direction in the multidimensional space.

The approximate “distance” between the meanings of two words is measured by finding the cosine of the

angle between their vectors, which determines the extent of the overlap of the vectors and measures sim-

ilarity of concepts. The lengths of the vectors are weighted by log inverse document frequencies of the

words. Log inverse document frequency is a concept from the field of Information Retrieval that describes

how uniformly a word is distributed over the text documents under consideration. Words such as “idea” or

“help” are approximately uniformly distributed throughout all the text documents under consideration and

give little information about a specific subject. Words that are localized in a few small areas of the docu-

ments usually discuss and relate to certain specific topics. Thus the log inverse document frequency gives

an approximate magnitude of the ability of a word to distinguish between different topics. This is similar to

the idea of information content described in section 2.

Intuitively, the process described by Schütze puts forth a scale that measures the extent to which two words

are related, but not without some pitfalls. Firstly, to improve the accuracy and the reliability of the results we

need that vectors be weighted, which requires us to calculate the log inverse document frequencies of all the

words in the word-space. Secondly, Schütze observes that the algorithm gives good results when the vectors

of the words in the context of the ambiguous word have a high degree of “discriminating potential”, i.e.

the ability to distinguish between different topics. This implies that the same algorithm may give different

results for the same words in different texts.

Some highly related work, using context vectors, has also been done by Inkpen and Hirst [11]. They attempt

to disambiguate near-synonyms in text using various “indicators”. Near-synonyms are words whose senses

are almost indistinguishable. There is only a fine difference between their senses.
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Their disambiguation algorithm considered a number of “indicators” to determine the correct sense of the

word. The suggestions from the “indicators” were then weighted by a decision tree to get the final result.

The decision tree was learnt from a test data set.

One of the “indicators” used in the process was based on context vectors. Using an approach similar to

that described by Schütze, context vectors were created for the context of the word and for the glosses of

each sense of the target word. The glosses were considered as a bag of words and the word vectors for

these words were summed to get the context vectors corresponding to the glosses. The distance between

the vector corresponding to the text and that corresponding to the gloss was measured (as the cosine of the

angle between the vectors). The nearness of the vectors was used as an indicator to pick the correct sense of

the target word.

The use of context vectors described by Schütze gives us a way of describing a concept, using the context it

occurs in. It also allows us to imagine a way to augment the short glosses with knowledge from an external

source (a corpus of text).

3.2 A Measure of Semantic Relatedness based on Context Vectors

We introduce a measure of semantic relatedness based on context vectors that is inspired by Schütze’s

approach. In our approach, each concept in WordNet is represented by a gloss vector. A gloss vector is

essentially a context vector formed by considering a WordNet gloss as the context. The semantic relatedness

of two concepts then is simply the cosine of the angle between the corresponding normalized gloss vectors.

In order to create gloss vectors we start by creating a word space, a list of words that would form the

dimensions of the vectors. This list of words should contain words that are highly topical, having great

potential to discriminate topics. Schütze used frequency cutoffs and the �� test of association on the words

of a large corpus. For our experiments we use the WordNet glosses as a corpus, and select content words

for the word space from it. We use a list of stop words to eliminate function words. We experiment with

different frequency cutoffs and study their effect on the measure.

The next step in creating gloss vectors is the creation of word vectors corresponding to all content words in

the WordNet glosses. The process is similar to that described by Schütze. To create a word vector for word

�:
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1. Initialize the vector to a zero vector
�

�.

2. Find every occurrence of � in a large corpus.

3. For each occurrence, increment those dimensions of
�

� that correspond to the words from the word

space, present in a window of context around � in the corpus.

The vector
�

�, therefore, encodes the co-occurrence information of �. Using this method we create word

vectors for all content words present in the WordNet glosses. Again, the content words, whose word vectors

are created, can be selected using various means such as frequency cutoffs, stop-lists, etc. For our exper-

iments, we create word vectors from the “WordNet gloss corpus”, a corpus composed of all the glosses

present in WordNet. We consider each gloss as the context.

Intuitively, we can imagine the multidimensional “word vector space” to be composed of a large number

of “pockets of space”, each pocket corresponding to a certain topic or aspect of the real world. Depending

on their direction, the word vectors are weighted by the various pockets based on the senses of the word

(corresponding to the word vector). To illustrate this point, consider the word bank, which could mean “a

financial institution” or a “river bank”. The word vector for bank would be weighted by the pockets of the

space corresponding to finance and by pockets of the space related to rivers (and nature). This is because the

word bank would co-occur with words from these two categories, in a large corpus. Other pockets, related

to the human body for instance, would have no bearing on this word vector at all. Ideally, every word vector

would be weighted by pockets or topics related to the corresponding word (and it senses).

Having created the word vectors, the gloss vector for a WordNet concept is created by adding the word

vectors of every content word in its gloss. For example, consider the gloss of lamp – an artificial source of

visible illumination. The gloss vector for lamp would be formed by adding the word vectors of artificial,

source, visible and illumination.

Again, imagining the “pocket” view of the multidimensional space, for a gloss vector we would hope and

expect that the particular pocket in the space would more highly weight that gloss vector as compared to

the other pockets. This would be because, the content words in the gloss would have at least one topic in

common, and all the word vectors corresponding to these content words would be weighted by one common

pocket. The gloss vector would, therefore, be more highly weighted towards this common topic and this

common topic describes, to some extent, the concept under consideration.
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This formulation of the Vector measure is independent of the dictionary used and is independent of the

corpus used, and hence is quite flexible. However, it faces some of the problems faced by Lesk’s [15] gloss

overlap algorithm for word sense disambiguation – short glosses. To overcome this problem Banerjee and

Pedersen [3] adapted their Extended Gloss Overlap measure to use the relations in WordNet to augment

the short glosses with other related glosses. We use the relations in WordNet and augment the glosses in a

similar way for the vector measure. To create a gloss vector with augmented glosses, consider the gloss of a

concept �. With this gloss we concatenate the glosses of all concepts related to � by any WordNet relation.

Also, rather than using all the WordNet relations, we can control the speed and efficacy of the measure, by

carefully selecting the relations to use for the augmented gloss. The gloss vector for � is then created from

the big concatenated gloss. It is also possible to use other dictionaries or representations of the concept to

build gloss vectors from.

Normalized
gloss vector
for "fork"

Food

Tennis

Eat

Serve

= Word Vector

= Gloss Vector

Cutlery

Figure 3: A 2-dimensional vector space showing word vectors and a gloss vector

The word vectors as well as the gloss vectors usually have a very large number of dimensions (usually tens

of thousands) and it is very difficult to visualize this space. Figure 3 attempts to illustrate the vectors in

two dimensions (i.e. using a vector space of only 2 dimensions). Tennis and food are the dimensions of this

2-dimensional space. We see that the word vector for serve is approximately halfway between tennis and
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food, since the word serve could mean to “serve the ball” in the context of tennis or could mean “to serve

food” in another context. The word vectors for eat and cutlery are very close to food, since they do not have

a sense that is related to tennis. The gloss for the word fork – “cutlery used to serve and eat food” – contains

the words cutlery, serve and eat (and food). The gloss vector for fork is formed by adding the word vectors

of cutlery, serve and eat and food. Thus, fork has a gloss vector which is heavily weighted towards food.

Food is, therefore, topical of and is related to the concept of fork. However, this is a small gloss. Using

augmented glosses, we achieve better representations of concepts to build gloss vectors upon.

Gloss vectors for all concepts in WordNet can be computed in this manner. The relatedness of two concepts

is then determined as the cosine of the normalized gloss vectors corresponding to the two concepts:

����������
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���� (21)

where �� and �� are the two given concepts,
�

�� and
�

�� are the gloss vectors corresponding to the concepts

and ��
�� returns the angle between vectors. Using vector products we can rewrite the above relatedness

formula as:
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(22)

We now have a measure of semantic relatedness based on WordNet glosses, which is enhanced with infor-

mation from a large corpus of text. However, it should be pointed out that this measure is not dependent on

WordNet glosses, and can be employed with any representation of concepts (such as dictionary definitions),

with co-occurrence counts from any corpus.
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4 Experimental Procedure

In the earlier sections we described a number of measures of semantic relatedness. We then explained how

extended gloss overlaps could be used as a measure of semantic relatedness. This thesis then introduced

a new measure based on context vectors in section 3. These measures are compared in this thesis. This

section describes the methodology used to compare and contrast the measures. First a comparison of these

measures with the human perception of relatedness is performed. The measures are then compared, based

on their effectiveness at the task of word sense disambiguation.

4.1 A Human Relatedness Study

Rubenstein and Goodenough [25] performed an experiment whose goal was to explain the basis of the

human perception of synonymy. They had human subjects assign degrees of synonymy, on a scale from 0

to 4, to 65 pairs of carefully chosen words. The experiment was repeated by Miller and Charles [19] on a

subset of 30 word pairs of the 65 used by Rubenstein and Goodenough. Rubenstein and Goodenough used

15 subjects for scoring the word pairs and the average of these scores was reported. Miller and Charles used

38 subjects in their experiments to score the 30 word pairs. We use the same set of 30 word pairs to perform

a comparison of the measures with human perception of semantic relatedness.

The 30 word pairs covered all degrees of semantic relatedness as assigned by humans: 10 highly related pairs

(having a score between 3 and 4), 10 pairs having scores between 1 and 3, indicating intermediate relatedness

and 10 pairs that were rather unrelated (scored 0 to 1). Table 2 lists the word pairs with the average semantic

relatedness scores assigned by human subjects in the Rubenstein and Goodenough experiments, as well as

the Miller and Charles experiments. The values have been taken from [19].

We repeat this experiment using our implementation of these measures. We implemented these measures as

Perl modules so as to be able to use them in different tasks. We distribute our Perl implementation of these

measures on CPAN (Comprehensive Perl Archive Network) under the GPL. They can be freely downloaded

from [22]. We used version 0.05 of the WordNet::Similarity package for our experiments.

The measures of semantic relatedness give us the relatedness between word senses. So as to use them to

determine the relatedness of each of the word pairs, we find the relatedness between every combination of
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Table 2: Word pairs used in the human relatedness experiment

R&G M&C R&G M&C

Word Pairs Score Rank Score Rank Word Pairs Score Rank Score Rank

car - automobile 3.92 1 3.92 2 crane - implement 1.66 15 2.37 14

gem - jewel 3.84 2 3.94 1 journey - car 1.16 16 1.55 15

journey - voyage 3.84 2 3.58 6 monk - oracle 1.10 17 0.91 21

boy - lad 3.76 3 3.82 3 cemetery - woodland 0.95 18 1.18 17

coast - shore 3.70 4 3.60 5 food - rooster 0.89 19 1.09 18

asylum - madhouse 3.61 5 3.04 9 coast - hill 0.87 20 1.26 16

magician - wizard 3.50 6 3.21 7 forest - graveyard 0.84 21 1.00 19

midday - noon 3.42 7 3.94 1 shore - woodland 0.63 22 0.90 22

furnace - stove 3.11 8 3.11 8 monk - slave 0.55 23 0.57 24

food - fruit 3.08 9 2.69 11 coast - forest 0.42 24 0.85 23

bird - cock 3.05 10 2.63 12 lad - wizard 0.42 24 0.99 20

bird - crane 2.97 11 2.63 12 chord - smile 0.13 25 0.02 27

tool - implement 2.95 12 3.66 4 glass - magician 0.11 26 0.44 25

brother - monk 2.82 13 2.74 10 rooster - voyage 0.08 27 0.04 26

lad - brother 1.68 14 2.41 13 noon - string 0.08 27 0.04 26
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word senses of the two words in the pair. The maximum relatedness of the word senses is selected as the

relatedness of the pair. The word pairs are then arranged in decreasing order of semantic relatedness. The

correlation coefficient of this ranking with respect to the Rubenstein and Goodenough ranking is determined.

This correlation coefficient is used to compare the measures.

4.2 An Application Oriented Comparison of Relatedness

Lesk [15] described a method for word sense disambiguation based on overlaps of dictionary definitions

of word senses. In order to determine the sense of a target word in a given context, this method finds the

extent of overlap of the dictionary definition of each sense of the target word with the senses of words in

the context of the target word. Overlaps are defined as string matches. For example, a if phrase like “the

American President” occurred in two definitions, this would be considered as an overlap. The sense of the

target word with maximum overlap with the senses of the words in the context of the target word is selected

as the intended sense of the target word. Banerjee and Pedersen [3] adapted this approach to use WordNet as

the dictionary and also enhanced the algorithm to extend glosses by using the glosses of concepts related to

them in WordNet. The adapted algorithm [2] [3] showed improvement in results over the original algorithm

devised by Lesk.

There is one basic hypothesis underlying the original gloss overlap algorithm of Lesk and its adaptation by

Banerjee and Pedersen. This hypothesis says that of the senses of the target word, the intended sense is

most related to the senses of the words in the context. The extent of overlap of dictionary definitions in both

the above approaches, therefore, attempts to measure the relatedness of the senses of the target word with

the senses of the context words. In section 2, we introduced this notion of gloss overlaps as a measure of

semantic relatedness. One of the contributions of this thesis is the realization that any measure of relatedness

can be used in the adapted Lesk algorithm of Banerjee and Pedersen to perform word sense disambiguation.

We use this extended version of the adapted Lesk algorithm to compare the various measures of semantic

relatedness. We use each measure of semantic relatedness and perform disambiguation of test data. The

results of disambiguation are used for the comparison of the effectiveness of the measures at this task.

A brief description of the word sense disambiguation algorithm follows. Banerjee and Pedersen describe

two approaches to determine the correct sense of the target word in the context – the local approach and
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the global approach. These approaches define ways of scoring the senses of the target word, using semantic

relatedness.

The following steps describe the local approach to word sense disambiguation:

1. The set � of the candidate senses of the target word is first determined. The target word is the word

in the context that has to be disambiguated. The candidate senses are the possible senses of the target

word, according to WordNet. The part of speech of the target word is usually known and the possible

senses are restricted to that part of speech.

2. The set � of senses of the context words is then determined. Set � contains the senses of all words in

the window of context of the target word, excluding the target word. Window of context is the set of

words selected from the context, used for the disambiguation of the target word. For our experiments

we select 3 to 5 words from the context, surrounding the target word, as the window of context.

3. The relatedness of each sense of the target word with the senses of the context words is determined.

In order to do this, for each element � in set � , the sum of the relatedness of � with each element in

set � is assigned as the score for �. Mathematically,

��	����� �
�
��

������ �� (23)

where � � and ������� ��� measures the semantic relatedness between the concepts ��, ��.

4. The intended sense of the target word is that sense of the target word having the maximum “score” of

relatedness with the senses of the context words. It is the element in set � with the maximum score.

Mathematically,
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where ������
�� is the selected sense of the target word.

The following steps describe the global approach to word sense disambiguation:

1. The set � of the candidate senses of the target word is first determined.

2. For each word �� in the window of context, excluding the target word, a set �� containing the possible

senses of �� is created.
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3. For each element � from set � :

(a) An element ��
 is picked from each of the sets ��.

(b) Set !
 is created with these elements, !
 � ���
� ��
� � � � � ��
� ��.

(c) A sub-score of element � is computed as the sum of the relatedness of every possible pair of

concepts from !
.

(d) The score for element � is then computed as the sum of sub-scores of � from every possible

formulation of the set !
.

The following example illustrates this scoring procedure to compute the score for sense � of the target

word.

(a) Suppose we have 2 words, �� and �� in the window of context of the target word, each having

2 senses. Then �� � ����� ���� and �� � ����� ���� are the sets containing the senses of the

words �� and ��, respectively.

(b) Picking one element from each of the sets �� and ��, we create various possible formulations

of set !
. These are enumerated below:

!
� � ����� ���� ��

!
� � ����� ���� ��

!
� � ����� ���� ��

!
� � ����� ���� ��

(c) For each formulation of set !
, a sub score is calculated as the sum of the relatedness of all

possible pairs of concepts from the set. Therefore, for !
�, we have

�"# ��	���!
�� � �������� ���� � �������� �� � �������� �� (25)

where ������� ��� is the relatedness of concepts �� and ��.

Similarly, for !
�, !
� and !
�, we have

�"# ��	���!
�� � �������� ���� � �������� �� � �������� �� (26)

�"# ��	���!
�� � �������� ���� � �������� �� � �������� �� (27)

�"# ��	���!
�� � �������� ���� � �������� �� � �������� �� (28)
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(d) The score for sense � of the target word is the sum of the sub scores for �. In this case,

��	����� � �"# ��	���!
�� � �"# ��	���!
�� � �"# ��	���!
�� � �"# ��	���!
�� (29)

4. The score for each element in set � is computed. The element from the set � having the maximum

score is then the selected sense of the target word.

In both the above approaches, the relatedness of concepts can be found using any of the measures of se-

mantic relatedness. We perform a number of experiments with each of the measures of relatedness, varying

parameters of the algorithm such as the local/global approach, window of context, etc. We also vary a

number of measure-specific parameters to compare the measures.
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5 Description of the Data

To test and evaluate the measures in performing word sense disambiguation, we require a gold standard to

measure the performance against. Such data was provided for comparing various Word Sense Disambigua-

tion systems at the SENSEVAL-2 [7] exercise. We use this data to measure the performance of the measures

at the task of word sense disambiguation.

The information content based measures are tested using information content values computed from various

corpora. A description of these is also provided in this section.

5.1 The SENSEVAL-2 Data

SENSEVAL-2 was an international competition where the entrants evaluated their word sense disambiguation

systems on common data in order to compare results in a rigorous way. The data for testing the systems was

carefully prepared by lexicographers.

The SENSEVAL-2 competition consisted of two tasks – the lexical sample task and the all words task. In the

lexical sample task the participating disambiguation systems were required to disambiguate only a single

word in each given context. The all words task involved the disambiguation of every content word in the

context. Data sets for both these tasks were provided to the teams to measure the accuracy of their systems.

In our experiments we used the lexical sample test data. The lexical sample data consists of 73 different

target words. The test data is composed of approximately 4328 instances. There was also training data

provided (for supervised systems), but we do not use that data. Each instance is a short paragraph containing

3 to 4 sentences and an occurrence of the target word. The data contains multiple instances for each target

word. Also, each target word is used in a single part–of–speech in all instances that it occurs. For example,

the target word chair occurs as a noun in all instances where chair is the target word to be disambiguated.

A typical example of an instance is shown if Figure 4.

The entire instance is enclosed within <instance> and </instance> tags. Each instance is identified

by an ID specified within the tag (“art.30010” in the above example). The target word (art) is enclosed

within <head> and </head> tags.
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<instance id="art.30010" docsrc="wsj_1686.mrg_1">

<context>

After all, farmers here work with "hazardous" chemicals every day, many

of them the same chemicals that would have been destroyed in the

incinerator. We know they are dangerous, but if handled with care, their

benefits far outweigh any risk to the environment. Just because Stamford,

Conn., High School did nothing when its valuable 1930s mural was thrown in

the trash does not mean the city no longer owns the work of

<head> art </head>, a federal judge ruled.

</context>

</instance>

Figure 4: Example of an instance from SENSEVAL-2 data

Of the 73 target words, 29 occur as nouns in all their instances, 29 as verbs and 15 as adjectives. 1754

instances contain the noun target words, 1806 contain verb target words and 768 instances contain adjectives

as target words. The correct answers to all the instances are provided in a separate key. This key is used for

evaluating and scoring our results. This key was not available to the participants until after the event.

In our experiments we compare 7 measures of semantic relatedness. Four of those measures are noun-only

measures and cannot measure the relatedness of words in other parts–of–speech. To make the comparison

of the measures fair and equivalent, we used only the instances with nouns as target words. However, of the

1754 noun instances, it turned out that in 31 instances the target word did not have noun candidate senses.

This was because they were used as compounds with surrounding words. Compounds or compound words

are multi-word sequences of 2 or more words that behave as a single entity and refer to a concept in Word-

Net. WordNet synsets contain a large number of compound words. For example, art gallery and private

school are compounds that can be found in WordNet. In 31 instances, the target word formed compounds

with surrounding words, and these compounds had no noun senses. These instances were removed from

the evaluation set and the set of 1723 instances was used for all the experiments involving the noun-only

measures. Table 3 summarizes the characteristics of each target word in this noun data. The table lists all

the noun target words. For each word it lists in the first column the number of noun senses in WordNet for

that word. The base form of the word is used to get this count. What this means is that even though the

in some instances art may be used as arts we count the number of senses of art in WordNet. The second
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Table 3: Summary of the lexical sample data set for noun target words

Word Instances WordNet Candidate Word Instances WordNet Candidate

Senses Senses Senses Senses

art 98 4 14 grip 42 7 8

authority 92 7 9 hearth 32 3 3

bar 151 13 21 holiday 31 2 3

bum 44 4 4 lady 53 3 8

chair 69 4 7 material 69 5 10

channel 73 7 13 mouth 57 8 8

child 63 4 5 nation 37 4 6

church 64 3 9 nature 44 5 6

circuit 85 6 15 post 78 8 12

day 134 10 18 restraint 45 6 7

detention 32 2 5 sense 50 5 11

dyke 28 2 2 spade 33 3 4

facility 58 5 7 stress 39 5 5

fatigue 43 4 6 yew 28 2 3

feeling 51 6 7

column displays the total number of candidate senses that are considered for all the instances of the target

word. This value differs from the number of WordNet senses of the word, because the target word may ap-

pear in different morphological forms – for example, instances could contain art or arts as the target word.

Compound words containing the target word could also be the target sense in some instances. For example,

art gallery is a valid target sense in one of the instances. All these different forms of the target word have

different senses, and it is up to the word sense disambiguation algorithm to determine the set of candidate

senses for the target word.

As separate comparison was done of the measures that could handle all parts of speech. For these measures,

all of the 4328 instances (nouns, verbs and adjectives) were used. Table 4 and table 5 list out the verb and
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Table 4: Summary of the lexical sample data set for verb target words

Word Instances WordNet Candidate Word Instances WordNet Candidate

Senses Senses Senses Senses

begin 280 10 7 match 42 9 7

call 66 28 17 play 66 35 20

carry 66 39 20 pull 60 18 25

collaborate 30 2 2 replace 45 4 4

develop 69 21 14 see 69 24 13

draw 41 35 22 serve 51 15 11

dress 59 15 12 strike 54 20 20

drift 32 10 9 train 63 11 8

drive 42 21 13 treat 44 8 5

face 93 14 6 turn 67 26 26

ferret 1 3 1 use 76 6 6

find 68 16 17 wander 50 5 5

keep 67 22 20 wash 12 12 7

leave 66 14 10 work 60 27 18

live 67 7 9

the adjective target words.

Before using the data in experiments, it was preprocessed to make it easier to run experiments on. The

following preprocessing steps were taken:

1. Separate files were created for each target word, containing the instances for that target word.

2. XML tags between [ and ] were removed.

3. Special character codes were removed.

4. Punctuation was removed.

5. The data was converted to lower case.
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Table 5: Summary of the lexical sample data set for adjective target words

Word Instances WordNet Candidate Word Instances WordNet Candidate

Senses Senses Senses Senses

blind 55 3 6 green 94 7 14

colorless 35 2 3 local 38 3 4

cool 52 6 7 natural 103 10 23

faithful 23 3 3 oblique 29 2 3

fine 70 9 14 simple 66 7 5

fit 29 3 3 solemn 25 2 2

free 82 8 13 vital 38 4 4

graceful 29 2 2

6. All compound words were identified in the data.

For evaluating the results of the disambiguation algorithm, the precision is computed for 1723 noun instances

when all the measures are being compared and for all the 4238 instances when only the measures that can

handle all parts of speech are being compared. The scoring program has been provided by the organizers of

SENSEVAL-2. This scoring program considers all the 4328 instances while computing the recall. Since, we

are scoring only 1723 instances out of these, the recall value generated by the scoring program is ignored.

In the case when the measures attempt to assign a sense tag to all the instances, the precision would be equal

to recall and we will call this the accuracy. In the experiments, we also have an option to not attempt an

instance if the relatedness score obtained is zero. For these experiments we manually compute the precision

and recall.

5.2 Corpora for Computing Information Content

Three of the measures of semantic relatedness use information from large corpora along with WordNet to

compute the semantic relatedness of word senses. The corpora are used to compute information content

values, which specify the specificity or generality of each concept.
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Table 6: Summary of corpora used to compute Information Content

Corpus Number of Tokens Number of Types

SemCor 1.7 198,796 23,301

Brown 1,035,651 42,419

Treebank 1,290,000 50,000

BNC 100,106,008 939,0028

In our experiments we used the following corpora for computing information content: SemCor 1.7 [18], the

Brown Corpus [9], the Penn Treebank-2 [17] and the British National Corpus. SemCor is a semantically

tagged subset of the Brown Corpus. This corpus was used considering the sense tags in one set of experi-

ments and ignoring the sense tags for another set of experiments. From the Treebank corpus, only the plain

text “Wall Street Journal” articles were used to compute information content.
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6 Results and Analysis

6.1 Human Perception of Relatedness

In order to compare measures of semantic relatedness to human perception of relatedness, we use a set of

30 word pairs. Miller and Charles [19], in an experiment, had human subjects assign scores of relatedness

to these word pairs. The word pairs are ranked, based on the assigned scores. The 30 word pairs selected by

Miller and Charles was a subset of a set of 65 pairs used by Rubenstein and Goodenough [25], in a similar

experiment conducted over 25 years before the Miller and Charles experiment. Scores assigned to the word

pairs by the measures of semantic relatedness are used to arrange the word pairs in a ranked list.

Spearman’s correlation coefficient is used to determine how close two rankings of a set of data are.The value

of Spearman’s correlation coefficient ranges from -1 to 1. A value of 1 indicates identical rankings; a value

of -1 indicates exactly opposite rankings; a value of 0 indicates no correlation between the rankings. Other

values of the coefficient indicate intermediate levels of correlation between these.

It is interesting to note that the correlation between the Miller and Charles ranking and the Rubenstein and

Goodenough ranking of the 30 word pairs is approximately 0.95. This shows that there has been little

change in the human perception of the semantic relatedness of the 30 word pairs over 25 years and that the

experiment is repeatable.

Table 7 summarizes the correlation between the measures of semantic relatedness and the human rankings

from the Miller-Charles experiment and from the Rubenstein-Goodenough experiment.

The extended gloss overlaps measure was run with all the WordNet relations and a standard stop-list. The

information content based measures, i.e. Resnik, Lin and Jiang-Conrath, were run with the information

content from various sources and the best values are shown in the table. The Vector measure was run using

all relations, and word vectors computed from the WordNet glosses alone. Various frequency cutoffs were

tried to select the dimensions of the vectors. The best results are shown in the table.

We find that the Vector measure corresponds very closely to the human perception of relatedness. This is

possibly because the measure attempts to imitate the way humans perceive relatedness. Miller and Charles

show that humans build contextual representations of words from their usage in everyday life. The overlap of

the contextual representations determines the semantic relatedness of words in the minds of human beings.
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Table 7: Correlation between the measures of relatedness and human perception of relatedness

Relatedness Measures M & C R & G

Vector 0.877 0.849

Jiang & Conrath (using Treebank) 0.826 0.873

Extended Gloss Overlaps 0.807 0.810

Hirst & St.Onge 0.779 0.810

Resnik (using BNC) 0.771 0.781

Lin (using BNC) 0.760 0.801

Leacock & Chodorow 0.721 0.749

The Vector measure closely follows this pattern. The Jiang-Conrath measure also does very well as a

measure of semantic relatedness. This shows that using corpus statistics in the form of information content

works well in a relatedness measure. The fact that the extended gloss overlaps also does almost as well

indicates that overlaps in the dictionary definitions of words is also a good indicator of the human judgment

of relatedness.

We made a number of variations in the Vector measure to see how it performed in different settings. The

Vector measure creates gloss vectors from word vectors. We created these word vectors from WordNet

glosses. We had approximately 54,000 word vectors, with each vector having approximately 54,000 dimen-

sions. We experimented with frequency cutoffs, to reduce the size of the vectors and the number of word

vectors. We used the 20,000 most frequently occurring words for the dimensions of the vectors and we cre-

ated word vectors for the 2,000 most frequently occurring words. We also tried upper and lower frequency

cutoffs. We used words with frequencies of occurrence between 5 and 1,000 as dimensions.

The WordNet relations used for calculating the relatedness were also varied. In the first set of experiments,

the glosses from all concepts related to the target concept by any WordNet relation were concatenated with

the gloss of the target concept while forming the gloss vector. In the second set of experiments only the

glosses of the target concepts were used to form the gloss vectors. Table 8 summarizes the correlation with

human perception of the variations in the Vector measure.

Notice that having upper and lower frequency cutoffs has a great effect on the correlation coefficient. How-

40



Table 8: Variations in the Correlation Coefficients for the Vector measure

Relations Used

Word Vector Dimensions All Gloss

Words with frequencies 5 to 1,000 0.877 0.620

20,000 most frequent words 0.716 0.517

No frequency cut-offs 0.713 0.571

ever, when no cutoffs are used or only an upper cutoff is used, the correlation is much lower and almost

the same for both cases. This suggests that words with very low frequencies add a great deal of noise to

the vectors. Also, it suggests that a careful selection of the words for the dimensions of the vectors could

improve the measure even more.

Another point to observe is that, using all the WordNet relations, no change in the correlation coefficient is

seen between having no frequency cutoffs and having only an upper cutoff. But a lot of variations in the

correlation coefficient are seen when only the glosses of the concepts are used. This shows that the size

of the glosses is too small to completely describe concepts. Concatenating the glosses of related senses

in WordNet provides a more complete description of the target concepts. Building gloss vectors upon less

complete description, thus gives us lower correlation values.

As a point of comparison we ran the Extended Gloss Overlaps measure with only the gloss-gloss relation. In

this scenario, the Extended Gloss Overlaps measure computes the relatedness of two concepts as the extent

of overlap of their glosses. It does not use the glosses of any of the related concepts. With this setting the

Extend Gloss Overlaps measure achieved a correlation coefficient of 0.527 with respect to the Miller and

Charles ranking. Given the same information, the Vector measure did only slightly better in one case (when

word vectors were from WordNet and no frequency cutoffs).

We ran a number of additional experiments to observe variations in the behavior of the information content

based measures. Table 9 summarizes the correlation of the information content based measures with differ-

ent sources of information content. Information content values were computed using frequency counts from

SemCor, the Brown Corpus, the Treebank Corpus (WSJ articles) and the British National Corpus. Count-

ing was done using our method of counting and no smoothing of frequency counts was done. Correlation
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Table 9: Variations in the Correlation Coefficients for the measures based on Information Content

Information Content Jiang

Source Resnik Lin Conrath

SemCor 0.714 0.698 0.727

Brown 0.730 0.744 0.802

Treebank 0.746 0.749 0.826

BNC 0.753 0.751 0.812

coefficients are shown with respect to the Miller and Charles rankings of the word pairs.

SemCor is a sense-tagged subset of the Brown corpus. The words in the corpus have been manually tagged

with their appropriate senses by human experts. However, the size of this corpus is relatively small –

approximately 200,000 words. The Brown corpus, the Treebank and the BNC on the other hand are plain

text corpora, with no annotations. These corpora contain a lot more text than SemCor. The Brown corpus

is a corpus of 1,035,651 words; The Treebank is a corpus of 1,290,000 words; The BNC is a corpus of

100,106,008 words.

We observe from the table that all the measures get closer to human perception of relatedness with the

increase in the quantity of corpus data used for the calculating information content. It is important to note

that sense-tagged text is extremely expensive to create and is much harder to come by. The Jiang-Conrath

measure shows the maximum improvement in the correlation coefficient with increase in corpus data, and

appears to have approximately the same correlation coefficient with information content computed from

different sized corpora. This suggests that the Jiang-Conrath measure is relatively independent of the size of

the corpus used for computing information content, as long as the corpus is above a certain minimum size

and is a relatively balanced corpus.

We also conducted experiments to observe the effect of Resnik’s method of counting and the smoothing

of frequency counts, while computing information content. We computed information content from the

BNC, with and without Add-1 smoothing. We also computed information content from the BNC, using our

method of frequency counting and using Resnik’s method of frequency counting. Table 10 summarizes the

outcome of these experiments.
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Table 10: Effect of smoothing and counting schemes on Correlation Coefficients for the measures based on

Information Content

Infocontent Jiang

from BNC Resnik Lin Conrath

Our counting, No smoothing 0.753 0.751 0.812

Our counting, Add-1 smoothing 0.752 0.751 0.812

Resnik counting, No smoothing 0.771 0.745 0.790

Resnik counting, Add-1 smoothing 0.771 0.760 0.790

We observe that the Add-1 smoothing does not have an appreciable impact on the correlation coefficients.

The Resnik method of counting, however, slightly improves the performance of the Resnik measure and

slightly degrades the performance of the Jiang-Conrath measure.

6.2 Application-Oriented Comparison of the Measures

A comparison of the measures with respect to their performance in an application tells us a different story

about the measures. The results of the comparison may or may not correspond with those of the human re-

latedness study, but would give us an idea if using one measure really has any impact on a Natural Language

Processing task over another measure.

We compare the measures of semantic relatedness in a Word Sense Disambiguation task. We modify the

Adapted Lesk algorithm of Banerjee and Pedersen [3], such that the various measures of semantic relat-

edness may be used in the scoring process. The basic hypothesis underlying this modification is that the

extent of the overlaps of the glosses in this algorithm is an indicator of the semantic relatedness of the two

concepts. Based on this hypothesis, in this thesis, we treat extended gloss overlaps as a measure of semantic

relatedness. We now attempt to perform Word Sense Disambiguation using the same basic algorithm, only

replacing the extended gloss overlaps measure with other measures of semantic relatedness.

The first experiment did a basic comparison of all the measures. A majority of the measures – Resnik,

Jiang-Conrath, Lin, Leacock-Chodorow – can only process nouns. In order that we have a fair comparison
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Table 11: Comparison of all the measures at WSD on the SENSEVAL-2 noun data

Window Size = 3 Window Size = 5

Local Global Local Global

Jiang & Conrath (using SemCor) 0.447 0.447 0.457 0.453

Extended Gloss Overlaps 0.401 0.399 0.428 0.427

Lin (using SemCor) 0.362 0.351 0.390 0.383

Vector 0.340 - 0.340 -

Hirst & St.Onge 0.304 0.302 0.328 0.319

Resnik (using SemCor) 0.280 0.283 0.287 0.302

Leacock & Chodorow 0.288 0.297 0.282 0.298

of the various measures, we made some modifications to the Word Sense Disambiguation algorithm. We

changed the algorithm so that only the noun senses of all words in the context would be considered. Also,

only the 29 noun test sets from the SENSEVAL-2 test data were used for the experiment. The words to

be disambiguated in the SENSEVAL-2 test set can be found in table 3 in section 5. Table 11 summarizes

the disambiguation accuracies that were obtained using each of the measures in various configurations of

the disambiguation algorithm. The different configurations were determined by the size of the window of

context and the disambiguation strategy (local or global) that was selected.

This Word Sense Disambiguation algorithm was originally created with the extended gloss overlaps measure

at the heart of the algorithm. But by looking at table 11 we observe that by replacing the extended gloss

overlaps with the Jiang-Conrath measure we get better disambiguation accuracy. Barring the Lin measure

and the Extended Gloss Overlaps measure, none of the other measures show much change in disambiguation

accuracy across the various configurations of the algorithm. The Vector measure, due to its computational

complexity, did not run to completion for the global approach. The Vector measure processes vectors having

approximately 50,000 dimensions. Because of the large size of the vectors, all the gloss vectors cannot be

loaded into memory. Reading the vectors off the disk really slows down the measure. Due to this time

complexity, the experiment didn’t run to completion for the global approach. For the local approach it

achieved reasonable accuracies.
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Table 12: Comparison of three measures at WSD on all of the SENSEVAL-2 data

Measure Score

Extended Gloss Overlaps 0.340

Vector 0.293

Hirst & St.Onge 0.229

Three of the measures – Hirst-St.Onge, Extended Gloss Overlaps and the Vector measure can handle all

parts of speech. The other measures are limited to nouns only. We did a separate comparison of these

measure in the word sense disambiguation of all the SENSEVAL-2 test data (all parts of speech). We ran

the experiments using the local disambiguation strategy and a window size of 5. Table 12 summarizes these

results.

The results indicate that the Extended Gloss Overlaps performs the best at the task on all parts of speech.

The Hirst-St.Onge measure seems to do rather poorly. This could be attributed to the fact that the measure

uses all the relations in WordNet to compute semantic relatedness. WordNet has a lot richer network of

relationships for nouns, as compared to the other parts of speech. So, when dealing only with nouns, the

Hirst-St.Onge measure benefits from the denser network for nouns. With all parts of speech, however, it

is put at a disadvantage by the sparser network of relations. The Vector measure does not get as good an

accuracy as extended gloss overlaps. This is possibly because of the noise that gets incorporated into the

vectors from the corpus.

On the whole, the Vector measure corresponds well with the human perception of semantic relatedness. It

performs reasonably well at the word sense disambiguation task, though it does not perform as well as we

would have hoped. However, the biggest advantage of the measure is that it can handle any part of speech.

It is not tied down to WordNet. The measure can be made WordNet-independent by using representations

of concepts other than glosses and computing word vectors from other corpora. Also, there is much room

for improvement in the performance of the measure, by eliminating noise from the word vectors. This could

be done by better selection of the content words forming the dimensions of the vectors (for example, using

frequency cutoffs) and by minimizing noise while counting co-occurrences (for example, getting counts for

only the most associated words determined using statistical tests of association).
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7 Related Work

This section takes a look at some of the related work. We considered some WordNet–based measures of se-

mantic relatedness in this thesis. Some other measures that have been used in applications are also described

here. Finally, we look at some supervised and unsupervised approaches to Word Sense Disambiguation.

7.1 Semantic Relatedness

Niwa and Nitta [20] compare the approaches to measuring semantic distance of words – using a large corpus

of text, such as the one described by Schütze [26], and using a dictionary. Semantic measures that use a

large corpus of text to measure distances between words are hindered because of the insufficient data for rare

senses of words. Niwa and Nitta propose a dictionary based approach, that uses a word network such as that

in an ordinary dictionary, where each word is linked to other words that occur in its definition (description of

its meaning). Therefore, each word is a node in this network. A set of selected nodes, usually corresponding

to words having medium range frequencies (51 to 1050) in the Collins English Dictionary, are selected as

origins. Vectors corresponding to each word are calculated as the shortest distances of the word to each of

the origins. The distance of a word from an origin is measured by counting the number of links between

nodes required to be traversed to reach the origin. In a simplistic case the links are assumed to have a fixed

weight. But this treats low-frequency words equivalent to high frequency words. However, if we consider

the relatively low frequency word limb that occurs in the definition of the relatively high frequency word

hand, we see that these two words (hand and limb) are more strongly related than hand and hold (which

may also occur in the definition of hand). Elaborating on this, if hand, limb and hold occur in a sentence we

would instantly associate hand with limb but we cannot say if there is or is not any relation between hand

and hold. Thus, we need to give more weight to links that pass through low frequency words. Taking word

frequency into consideration, the following definition of link weight is used:
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�
��

$� �$�

�
(30)

where �� and �� are the words, $� and $� are the number of links from the corresponding words and n is

the number of links between the words.

Niwa and Nitta compare dictionary based vectors with co-occurrence based vectors, where the vector of
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a word is the probability that an origin word occurs in the context (in a given window of words) of the

word. These two representations are evaluated by applying them to real world applications and quantifying

the results. Both measures are first applied to Word Sense Disambiguation and then to the Learning of

positives or negatives, where it is required to determine whether a word has a positive or negative meaning.

It was observed that the co-occurrence based idea works better for the Word Sense Disambiguation and

the dictionary based approach gives better results for the Learning of positive or negative. From this, the

conclusion is that the dictionary based vectors contain some different semantic information about the words

and warrants further investigation. It is also observed that for the dictionary based vectors, the network

of words is almost independent of the dictionary that is used, i.e. any dictionary gives us almost the same

network. Consequently, we are presented with yet another novel way to think about the semantic relatedness

of words.

Budanitsky provides a comprehensive discussion and comparison of a number of methods applied to find

semantic distances between words. The discussion includes algorithms using WordNet, as well as those not

using WordNet. Working on a network of biomedical literature very similar to that of WordNet, Rada et. al.

[23] define a simple edge counting technique that describes the conceptual distance between any two words

of the network, and it works well primarily due to the fact that the network of words is made using solely

a “Broader-than” (opposite of is-a and part-of) relationship. In this technique, the number of links between

the two words under consideration gives us the degree of relatedness. This simple edge-counting technique

is enhanced by Sussna [27] in order for it to apply to all the types of relationships defined in WordNet and

for it to take into consideration the reduced edge lengths at higher depths in the WordNet network hierarchy.

For example, entity is the most abstract class at the top of the is-a hierarchy and the degree of specificity

increases as we go lower down in the hierarchy. We see that as we go lower down in the hierarchy the nodes

are more related to their parent nodes than the nodes higher up in the tree. Nickel is more related to coin

(both lower down in the hierarchy) than the degree to which living being and phytoplankton are related.

Sussna achieves this by assigning specific weights to different types of relationships in WordNet and by

applying a “depth scaling factor” that scales the weight corresponding to the depth of the edge within the

WordNet network hierarchy. Apart from these Budanitsky also describes and evaluates other approaches to

semantic relatedness using other data sources, such as the Longman Dictionary of Contemporary English

(LDOCE) and Roget’s Thesaurus available in electronic format.
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Budanitsky compares and evaluates all these various measures with respect to certain human judged data and

applying these to solve a problem of detecting and correcting malapropisms in selected text and assessing

the results. Malapropisms are spelling errors that result in another word that is not supposed to be in the

text at that given point. It was found that the method described by Agirre and Rigau consistently gave

better results than the baseline approach of assigning the most common sense of the ambiguous word and

was described as “promising”. The application of the proposal by Rada et. al. to information retrieval

demonstrated improvement in performance.

7.2 WordNet–based Methods of Word Sense Disambiguation

Agirre and Rigau [1] develop a notion of conceptual density which is used as the core idea behind their

algorithm for Word Sense Disambiguation. They use the context of a given word along with the hierarchy

of is-a relations in WordNet to determine the correct sense of the word. It proceeds by dividing the hierar-

chy network of WordNet into subhierarchies and each of the senses of the ambiguous word belongs to one

subhierarchy. The conceptual density for each subhierarchy is then calculated using the conceptual density

formula which, intuitively, describes the amount of space occupied by the context words in each of the sub-

hierarchies. The formula returns, for each sense, the ratio of the area occupied by the subhierarchies of each

of the context words within the subhierarchy of the sense to the total area occupied by the subhierarchy of

the sense. The sense with the highest conceptual density value is then selected as the correct sense. For

example, if a word � has 3 senses, and there are 5 context words (��, ��, . . . , ��) within the context win-

dow, having 2 senses each. We divide the hierarchy into 3 subhierarchies, each subhierarchy containing one

sense of � . Now we find the conceptual density of each subhierarchy, by determining which subhierarchy

contains a greater number of senses of the context words per unit node. The sense of � in the subhierarchy

with the highest conceptual density is the selected sense. Budanitsky [5], in his evaluation of this technique,

suggests that this notion of conceptual density could be extended to measure semantic relatedness between

words. However, he does not specify an exact method to do so.
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7.3 Other Approaches to Word Sense Disambiguation

A number of other approaches to Word Sense Disambiguation, not using WordNet, have also been proposed

by researchers.

An approach that uses the Longman Dictionary of Contemporary English (LDOCE) is described by Kozima

and Furugori [13]. They use an approach called “Spreading Activation”. Here an activity measure is calcu-

lated, starting from the first word to all connected words in the densest part (LDV) of the dictionary and an

activity pattern is created. Finally, using the activity value of the target word (w.r.t. the starting word) and

a significance value of the target word, a measure of relatedness can be calculated. This formula is slightly

refined to include the “fringe” words of the dictionary.

Another approach to Word Sense Disambiguation is taken by Yarowsky [28]. Two properties of the words

associated with the ambiguous word are used. Firstly, words near the ambiguous word consistently indicate

the correct sense of the word. Secondly, the sense of the ambiguous word in a particular document or

discourse remains the same throughout. In order to start the algorithm, a relatively small number of the

instances (typically 2% to 15%) of the ambiguous word are hand tagged with their correct senses along

with their collocation. With this training set as a starting point, an iterative process is followed where new

collocations are first found in the tagged text and these are then applied to the untagged text which is then

tagged with the corresponding sense. During this process the second property, i.e. assigning tags based on

the discourse, is optionally used to extend the process and to correct erroneously assigned tags. Yarowsky

evaluates this method using data extracted from a 460 million word corpus, covering a wide range of texts

including news articles, novels, scientific texts, etc. The algorithm out does supervised algorithms in many

cases.
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8 Conclusions

The starting point of this thesis is found in the work of Banerjee and Pedersen [3], who adapted Lesk’s

word sense disambiguation algorithm to the lexical database WordNet. In this thesis, we suggested that

the method of disambiguation developed by Banerjee and Pedersen could employ any measure of semantic

relatedness, not just their method of using extended gloss overlaps. As a result of extending their algorithm,

we also came to view extended gloss overlaps as a generic measure of semantic relatedness. We showed

that this view was reasonable by carrying out a study of word sense disambiguation using a wide range of

measures of semantic relatedness, and obtaining reasonable results. In particular, we observed that the gloss

overlap method of Banerjee and Pedersen, and the information content based measure of Jiang and Conrath,

resulted in more accurate disambiguation than the other measures [21].

Based on these results, we developed a new measure of semantic relatedness that represents concepts using

context vectors, and is then able to establish relatedness by measuring the angle between these vectors. This

measure combines the information from a dictionary with statistical information derived from large corpora

of text. It was designed to merge the advantages of gloss overlap and information content measures such as

those of Banerjee and Pedersen and of Jiang and Conrath, and to do so in such as way as to avoid any strict

dependence on the use of a particular resource such as WordNet. In this thesis we evaluated our new measure

relative to six other existing measures in two different settings. First we compared all of these measures with

respect to human judgments of relatedness, and then as a part of a word sense disambiguation experiment.

For the human relatedness study, we used published results from Rubenstein and Goodenough [25] and

Miller and Charles [19]. These two groups of researchers conducted studies of human judgments of relat-

edness using 30 pairs of words with a large number of subjects, and arrived at relatively consistent results

despite the passage of more than 25 years between the studies.

We found that the context vector measure (Vector) correlates extremely well with the results of these human

studies, and this is indeed encouraging. We believe that this is due to the fact that the context vector is making

its relatedness judgments based on the actual context in which words occur, while the other measures rely

more on the existing structure of relations within WordNet to draw their conclusions. This measure can

be tailored to particular domains depending on the corpus used to derive the co-occurrence matrices, and

makes no restrictions on the parts of speech of the concept pairs to be compared. This is not true of most
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of the other measures. The Resnik, Jiang and Conrath, Lin, Leacock and Chodorow measures are limited to

studying noun-noun concept pairs, which we believe is overly restrictive.

We then evaluated this measure in the context of a comparative word sense disambiguation experiment,

where it did not fare quite as well as did other measures. In particular, it appears that extended gloss

overlaps continue to do very well in that domain. However, this is not terribly surprising in that extended

gloss overlaps are based on dictionary content, in fact the content of the same dictionary that is used in the

disambiguation exercise. Context vectors are not quite as tailored to the dictionary, which while that appears

to be a liability with respect to disambiguation, may mean that it has wider applicability.

An additional aspect of this work was the creation of a package of freely available software that implements

all of the measures of relatedness discussed in this thesis. This system is known as WordNet::Similarity,

and is available through the Comprehensive Perl Archive Network (CPAN). There are two great benefits to

creating such a resource. First, to implement these measures required that they be fully understood, and in

fact we realized that there were various limitations to the existing measures that we addressed. We improved

the handling of concepts with zero information content in the Jiang-Conrath and Lin measures, proposed an

alternate counting scheme for Resnik’s information content measure, and adapted the Hirst-St.Onge measure

to perform with concepts rather than surface forms of words. Second, we gained the benefit of having the

feedback from outside users who have downloaded the code, and in effect acted as critics and testers of the

package. As a results of their efforts, we feel particularly confident that our implementation and the ensuing

results we report are reasonably sound.
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9 Future Work

An analysis of the various experiments conducted gives us a number of ideas about future research that

would help improve automatic computation of semantic relatedness. We start by studying the measures in

their current form and imagine ways of improving their performance.

Analysis of the Word Sense Disambiguation results gives us some insight into the shortcomings of the

disambiguation algorithm. Our algorithm for disambiguation is based on the hypothesis that the correct

sense of the target word is highly related to senses of words in the context. Due to the heavy computation

involved in computing semantic relatedness between word senses, we consider a window of context of

size up to 5 content words immediately surrounding and including the target word. We hope to improve

disambiguation by selecting this window of context in a more principled manner. Ideas for getting better

context words are discussed here.

Some ways of extending the utility of these measures into other domains, such as that of Medical Informat-

ics, are also discussed in this section.

9.1 Extending Gloss Overlaps

Lesk [15] describes a method for Word Sense Disambiguation based on the dictionary definitions of words.

He selects that sense of the target word whose dictionary definition has maximum overlapping phrases with

definitions of surrounding words in the context. Banerjee and Pedersen [3] implemented this idea using

WordNet as the dictionary. They then adapted this method to incorporate the vast amount of information

encoded in the synset relations in WordNet. In this thesis we introduced this Adapted Lesk algorithm as a

measure of semantic relatedness.

To measure semantic relatedness, the adapted algorithm considers the overlap of glosses of the all synsets

related by one link to the two word senses under consideration. Figure 5 shows a schematic of how the

extended gloss overlaps measure uses the relations in WordNet to improve upon the basic Lesk algorithm.

In determining the relatedness of car#n#1 and bike#n#1, the algorithm considers all synsets directly

related to the two senses by WordNet relations and looks for the extent of overlaps of the glosses of these.

The question to ask here would be – why does the measure consider just direct relations? In figure 5

52



car#n#1

air_bag#n#1

motor_vehicle#n#1

cab#n#1

bike#n#2

dirt_bike#n#1

cycle#n#1

chain#n#1

wheel#n#1

pedal#n#1

Relation

Gloss Overlap

Figure 5: Schematic of the extended gloss overlaps measure

including the gloss of an indirect relation like the antonym of the hypernym might work equally well or

better.

One way to extend the gloss overlaps uses just the is-a hierarchy. In this method, while looking for gloss

overlaps between two synsets, look for overlaps between all subsuming synsets in the is-a hierarchy as well.

So here we look at synsets that are more than one link away. We could weight the overlaps of these by the

inverse of the distance from the target synsets.

9.2 Refining Gloss Overlaps

Another problem with the Adapted Lesk measure is that the scores generated due to the overlaps mostly

comprise of overlaps of non-content words like and, is, etc, or the overlaps contain only very general and

common words like usually or describe. These contribute very little to the score and just add noise to the

measure. An overlap of a highly topical content word is weighted equally with these common word overlaps.

What we would want to do is to weight overlaps of highly specific or topical words higher than overlaps of

general or non-topical words. This follows intuitively from the fact that two synsets which are related are

very likely to have highly topical words common in their dictionary definitions. For example, concepts like
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scuba-diving and water-sport, should have terms like water common to their definitions.

This does not mean that definitions that do not have highly topical words in their overlaps cannot be highly

related. The highly topical words just give a strong evidence of the fact. In order to weight topical words

higher than other words during the dictionary definition overlaps, again we could use information content

of the senses of the words to weight the overlaps. Words with higher information content are more specific

and topical and would weight the score higher than the more general terms in the overlaps.

9.3 Alternate Approaches to creating Word Vectors

Our analysis of the results from experiments on the Vector measure shows that the measure is highly sensitive

to the word vectors computed. We first created word vectors without any restrictions and the analyzed the

performance of the Vector measure. We then used various frequency cutoffs on the dimensions of the word

vectors. The correlation of the Vector measure with human perception greatly improved with carefully

selected frequency cutoffs. This shows that if we were could select the dimensions of the vectors in a

principled manner, we could hope for further improvement in the performance of the Vector measure and,

at the same time, would reduce the size of the vectors. Reduction in the size of the vectors would definitely

speed up the performance of the Vector measure.

Some ideas for selection of the dimensions of the word vectors follow:

1. The first method as used and compared in this thesis is that of frequency cutoffs. Very high frequency

words tend to be very general words, not specific to any particular topic. The Vector measure works

best if the words that form the dimensions of the vectors are highly topical content words. At the

same time very low frequency words are very rare and thus contribute to a very small extent to the

contextual description of the word or concept. Also, these words form the bulk of the dimensions of

the vectors. Thus, eliminating these dimensions should have little effect on the accuracy of the mea-

sure, while greatly improving the speed of the measure. Thus, choosing frequency cutoffs carefully is

very beneficial.

2. Word vectors may also be created by using statistical tests of association on the words of a corpus

to determine how much effect each word has on another. Tests such as the log likelihood or mutual

information may be used. The values of association of the words could be substituted for the co-
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occurrence frequencies in the vectors. Intuitively these tests tend to indicate the extent of contextual

similarity of words, justifying this approach. Frequency cutoffs could be applied to these as well.

3. The co-occurrence frequencies forming the word vectors could be weighted by the a value indicating

the specificity of the co-occurring words. A more topical word occurring in the context of word �

says more about the context of � than does a less topical word. Thus, frequencies could be weighted

by tf/idf values to take topicality into consideration.

All of these or some combination of these could be used to carefully create the word vectors.

9.4 A Principled Approach to Context Selection

In our word sense disambiguation experiments, we select a window of context of up to 5 content words

immediately surrounding the target word. We then determine the relatedness of each sense of the target

word with senses of the selected words. The sense of the target word that is most related to the senses of

these words is selected as the correct sense of the target word. Intuitively, we would expect that the context

or the entire discourse is about, or is related to, a particular topic. So we would expect the content words

in this discourse to be specific to that particular topic as well. With this conjecture, the correct sense of the

target word would also be related to the topic and hence related to the topical content words around it.

For example, suppose we have a discourse that describes the state of the share market. An instance of the

word bank is then, in all likelihood, talking about the “financial institution” sense of the word. Further, given

the topic of the discourse, we would expect the discourse to contain a lot of other monetary and financial

terms such as money, finance, credit, etc. The “financial institution” sense of bank would then be highly

related to these terms and would be correctly disambiguated by our algorithm.

The reality however is that in a large number of cases the words selected in the window of context have very

general senses (not pertaining to any topic in particular) and have no senses related to the correct sense of

the target word. For example, words like further, contain, etc would figure in the 5 words surrounding the

target word. The correct sense of the target word is, perhaps, related to the sense of a distant word in the

context.

We describe two principled approaches to selecting the window of context that may improve results.
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9.4.1 Using Information Content

We notice that in a lot of cases the words immediately surrounding the target word are very general words.

As such, these words do not have anything to do with the broad topic of the discourse. However, if we step

further away on either side of the target word, we would expect to find words that are more topical and have

senses that are more related to the topic of discussion of the context.

An extract from one of the instances from the SENSEVAL-2 data is shown below:

The barman was back (a leap) at his station behind the <head> bar </head>, as if nothing

had happened.

The target word to be disambiguated is enclosed within the <head> and </head> tags. In this sentence,

barman is most related to the correct sense of the target word. It is at a relatively greater distance from the

target word as compared to the some of the other content words. According to our algorithm, barman would

neither get considered in a window of context of size 3 nor a window of context of size 5 around the target

word. On the other hand, words like behind, nothing and happen would be used to disambiguate bar. In

such cases, the algorithm is put at a disadvantage by the selected words.

Another example is shown below:

In the middle of the room was a round table covered with oilcloth, and four high-backed carved

<head> chairs </head> set around it.

Again in this case, the word table, that gives away the correct sense of chair in this sentence, is a great many

words away from the target word and hence would not figure in the disambiguation process. Instead, words

like set and four would be used by the algorithm.

We wish to look for words in the context that have senses which are more specific to a particular topic. The

information content of a word sense gives us exactly this information. A method to compute information

content of concepts from a large corpus was introduced by Resnik [24] and is described in section 2 of this

thesis. Extending the idea of information content to words, we could select those words of the context that

have a sense with high information content. A down-side of doing this would be that even very general
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words having some obscure senses would get considered due to the high information content of an obscure

sense. For example, the word object has 4 noun senses, including senses like “a grammatical constituent

that is acted upon”, which is highly specific as compared to “a tangible and visible entity”. One way to

guard against this would be to consider only the information content of the first sense of the word during

the selection. This is based on the heuristic that the first sense of a word is the most widely used sense and

hence would be the most general sense out of all the senses.

The words from the context that would then be used by the algorithm to disambiguate the target word can

be selected by considering only those words whose information content is above a certain cutoff. The cutoff

can be empirically determined by performing experiments to see the kind of words that get selected using

different values for the cutoff.

As an alternative to selecting words from the context, can we instead select word senses from the context

and use those to determine the correct sense of the target word? Currently, the algorithm attempts to disam-

biguate the target word by first selecting a set of content words from the context, immediately surrounding

the target word. This set of words, along with the target word, is defined as the window of context. The

algorithm then measures the relatedness of each sense of the target word with every sense of every other

word in the window of context. Now instead of selecting a set of words from the context, the algorithm

could select a set of word senses. It could consider the context to be a set of word senses, consisting of every

sense of every content word in the given instance. The window of context could then be defined as the set

of word senses from the context, whose information content value is above a certain cutoff and lie closest

to the target word. This would eliminate a number of unnecessary word senses that lie near the target word

and also be able reach out and touch words that lie relatively far away from the target word.

9.4.2 Using Lexical Chains

Another method that could potentially be used to select a good set of context words is based on the concept of

lexical chains. One of the measures of semantic relatedness that was used in the disambiguation experiments,

viz. the Hirst-St.Onge measure, was actually designed by Hirst and St.Onge [10] to detect lexical chains

in text. They say that if text is “cohesive and coherent”, then successive words in the text are related to

preceding words and these words form “cohesive” chains in text, which they define as lexical chains. Their

paper lays down the rules that define what constitutes related words. They then describe a method that uses
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this definition of relatedness to create the lexical chains in text.

We propose, as future work, using the notion of lexical chains to restrict the context words considered by

the algorithm to those that actually matter for disambiguation.

Once we have a method to detect lexical chains in text, the method to restrict the window of context using

this method is straightforward. We would start by creating all the possible lexical chains in the given context.

Then, we would select only those chains that pass through the target word. Now, starting from the target

word follow these chains backwards as well as forwards and select the nearest words on these chains as the

window of context. The disambiguation algorithm would then proceed, as usual, by finding the relatedness

of the senses of the target word with the senses of these selected words.

Using this method, we hope to rope-in highly related words, relatively distant from the target word, into the

window of context. Figure 6 shows an example of what a lexical chain may look like in a given context.

around it.

Set at right angles to one side of the fireplace

was a two−seat wooden settle, and at the other side

a much larger leather couch. In the middle of the

room was a round table covered with a tablecloth,

and four high−backed <head> chairs </head> set

Figure 6: An example of a lexical chain in given context
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9.5 Use of Semantic Relatedness in Medical Informatics

A number of taxonomies and semantic networks similar to WordNet exist in other domains. For example,

MeSH and SNOMED CT are widely used taxonomies of medical terms used in the Medical Informatics

domain. These are comparable in size with WordNet. Other resources such as Clinical Data and Prescrip-

tions are available to hospitals and Clinics. Such resources could be used to measure semantic relatedness

of medical terms. If the measures could be modified to take advantage of the various available resources in

other domains, these might prove useful for research in these fields.

Such work is being currently carried out by us at the Mayo Clinic in Rochester. We are re-implementing the

measures to use a publicly available taxonomy of medical terms called SNOMED. The vast store of Clinical

Notes at the Clinic form the source of information content and word vectors for the measures. Being a

highly specialized domain, Medical Informatics suffers to lesser extent the problems of ambiguity faced by

ordinary English. We hope to capitalize on this advantage of the field. Results from these experiments will

be reported soon.
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Table 13: An example demonstrating the usage of Spearman’s Correlation Coefficient

Elements Ranking #1 Ranking #2

red 1 2

blue 2 3

green 3 1

yellow 4 4

A Spearman’s Rank Correlation Coefficient

Spearman’s coefficient is used to determine the similarity between two rankings of the same list of elements.

If the two rankings are exactly the same, the Spearman’s correlation coefficient between these two rankings

is �. While an exactly reverse ranking gets a value of ��. When the there is no relation between the

rankings, the Spearman’s correlation coefficient is 0 in such a case. The Spearman’s correlation coefficient

is computed by the following formula:

� � ��
� �
����

��� ��
�

� � ��� � ��
(31)

where � is the correlation coefficient, � is the number of elements and �� is the difference between the ranks

for each element in the two rankings.

For example, if two rankings of the elements �red, blue, green, yellow� is as specified in table 13, then using

the above formula (equation 31) we can compute the correlation between the rankings as:

� � ��
� � ���

��� ���

���� ���
����� ���

����	��

� � ��� � ��

� ��
� � ���� ��� � ��� ��� � ��� ��� � ��� ����
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� ���
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