
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of master’s thesis by

AMRUTA PURANDARE

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Dr. Ted Pedersen

Name of Faculty Adviser

Signature of Faculty Advisor

Date

GRADUATE SCHOOL

Unsupervised Word Sense Discrimination

by Clustering Similar Contexts

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Amruta Purandare

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

August 2004

Contents

1 Introduction 1

2 Background 6

2.1 Feature Selection 6

2.2 Object Representation 7

2.3 Measuring Similarities 8

2.3.1 Real-Valued Feature Space 10

2.3.2 Binary-Valued Feature Space 12

2.3.3 Similarity Matrix 14

2.4 Dimensionality Reduction via SVD 14

2.5 Clustering Algorithms 21

2.5.1 Hierarchical 21

2.5.2 Partitional 24

2.5.3 Hybrid Methods 25

2.6 Evaluation 25

2.6.1 Column Reordering Method 26

2.6.2 Measuring Precision and Recall 27

2.6.3 Entropy and Purity 28

3 Methodology 32

3.1 Identifying Features from Raw Text 32

3.1.1 Feature Selection from Test or Training 32

i

3.1.2 Local versus Global Training 33

3.2 Types of Features 34

3.2.1 Unigrams .. . 34

3.2.2 Bigrams .. . 35

3.2.3 Co–Occurrences 45

3.3 Context Representations 50

3.3.1 First-Order Context Vectors 51

3.3.2 Second-Order Context Vectors 57

3.4 Singular Value Decomposition 59

3.4.1 Setting parameters in lap2 60

3.4.2 Setting constants in las2.h 60

3.5 Determining Number of Clusters to Create 61

3.5.1 Similarity Score Cutoff 61

3.5.2 Filtering Low Frequency Senses 62

3.5.3 Cluster Visualizations 64

3.6 Evaluation 65

3.6.1 Eight Rooks (not Queens) Evaluation Algorithm 66

3.6.2 #CLUSTERS (M) = #SENSES (N) 67

3.6.3 #CLUSTERS (M)> #SENSES (N) . 69

3.6.4 #CLUSTERS (M)< #SENSES (N) . 72

4 Experiments 74

4.1 Experiment 1: Lexical Features and Similarity Measures. 74

ii

4.1.1 Data .. 75

4.1.2 Results .. . 76

4.1.3 Analysis .. . 77

4.2 Experiment 2: First and Second Order Context Representations 82

4.2.1 Data .. 83

4.2.2 Results .. . 84

4.2.3 Analysis .. . 87

4.2.4 Conclusions 91

4.3 Experiment 3: Local and Global Training 91

4.3.1 Data .. 92

4.3.2 Results .. . 92

4.4 Experiment 4: Augmenting Training Data with DictionaryContent 96

4.4.1 Data .. 98

4.4.2 Results and Analysis 98

5 Conclusions 101

5.1 Smaller Datasets 101

5.2 Larger Datasets 102

5.3 Global Training with Large Generic Text 103

5.4 Comparisons Against a Knowledge–Intensive Approach 103

6 Related Work 104

6.1 Word Sense Discrimination 104

6.2 Finding Sets of Related Words 107

iii

6.3 Bootstrapping Approaches 107

7 Future Work 109

iv

List of Figures

1 Vector Representations of Objects 9

2 Point Representations of Objects 9

3 Graphical Representation of Objects 15

4 Reducing a Matrix to K Dimensions with SVD 17

5 Example of Dendogram 22

6 Single, Complete and Average Link Clustering 23

7 Graphical Representation of Bigrams 44

8 Graphical Representation of Co-occurrences 49

9 Graphical Visualization of Clusters 64

v

List of Tables

1 Similarity Matrix for 5 Document Example 14

2 Document by Term Association Matrix 15

3 Matrix U .. . 17

4 Matrix D .. . 18

5 Matrix V .. . 18

6 Truncated Matrix U 19

7 Truncated Matrix D 19

8 Truncated Matrix V 20

9 Document by Term Matrix after SVD 20

10 Confusion Matrix before Column Re-ordering 26

11 Confusion Matrix after Column Re-ordering 27

12 Local Unigrams for verb Serve 36

13 Unigram Features, Global Training 37

14 Bigrams, Window Size of 2 38

15 Bigrams, Window Size of 5 39

16 Bigrams, Window Size of 5, Each Line a Context 40

17 Contingency Table for Bigrams 40

18 Contingency Table for Bigram TWINKLE<>STAR . 42

19 Bigram Log–Likelihood Scores 43

20 Bigram Matrix 45

21 Bigram Statistics Matrix 45

vi

22 Bigrams, Window Size of 3, each Line as Context 46

23 Co–occurrences, Window Size of 3, each Line as Context 47

24 Co–Occurrence Log–Likelihood Scores 48

25 Co-occurrence Matrix 49

26 Unigram Features, First Order Example 55

27 First Order Context Vectors 56

28 Unigram Features, Second Order Example 57

29 Example Feature Word Vectors 58

30 Feature Vectors of UNIX, COMMANDS and SYSTEM 58

31 Cluster by Sense Confusion Matrix 65

32 Confusion Matrix when (M = N) 67

33 Confusion with (M = N) after Column Re-ordering 68

34 Final Report for Confusion case (M=N) 69

35 Confusion Matrix when (M> N) . 70

36 Confusion with (M> N) after Column Re-ordering . 70

37 Final Report for Confusion case (M> N) . 71

38 Confusion Matrix when (M< N) . 72

39 Confusion with (M< N) after Column Re-ordering . 72

40 Final Report for Confusion case (M< N) . 73

41 Experiment 1 Results : Features and Similarity Measures (SENSEVAL-2) 78

42 Experiment 1 Results : Features and Similarity Measures (LINE) 79

43 Experiment 1: #Nouns (out of 29)> MAJ . 79

vii

44 Experiment 1: #Verbs (out of 28)> MAJ . 79

45 Experiment 1: #ADJ (out of 15)> MAJ . 80

46 Experiment 1: Performance of Second Order Co-occurrences 80

47 Experiment 1: Performance of Bigrams 80

48 Experiment 1: Performance of Unigrams 80

49 Experiment 1: Performance of Cosine Coefficient 81

50 Experiment 1: Performance of Matching Coefficient 81

51 Experiment 2: F-measures - First and Second Order Contexts (SENSEVAL-2) 86

52 Experiment 2: F-measures - First and Second Order Contexts (LINE, HARD, SERVE, and

mix) .87

53 Experiment 2: Bigrams vs. Co-occurrences 89

54 Experiment 2: Repeated Bisections vs. UPGMA 89

55 Experiment 2: All vs. Majority Class 90

56 Experiment 3: F-Measures with Global Training 93

57 Experiment 3: Comparing Global and Local Training 94

58 Experiment 3: Summarizing Global vs. Local Comparisons 95

59 Experiment 4: F–measures with(F-gl) and without(F-nogl) gloss augmentation 100

viii

Abstract

Word sense discrimination is the problem of identifying different contexts that refer to the same

meaning of an ambiguous word. For example, given multiple contexts that include the word ’sharp’,

we would hope to discriminate between those that refer to an intellectual sharpness versus those that

refer to a cutting sharpness. Our methodology is based on thestrong contextual hypothesis of Miller and

Charles (1991), which states that ”two words are semantically related to the extent that their contextual

representations are similar.”

This thesis presents corpus–based unsupervised solutionsthat automatically group together contex-

tually similar instances of a word as observed in a raw text. We do not utilize any manually created or

maintained knowledge–rich resources such as dictionaries, thesauri or annotated corpora. As a result,

our approach is well suited to the fluid and dynamic nature of word meanings. It is also portable to

different domains and languages, and scales easily to larger samples of text.

The overall objective of this thesis is to study the effect ofvarious feature types, context represen-

tations and clustering methods on the accuracy of sense discrimination. We also apply dimensionality

reduction techniques to capture conceptual similarities among the contexts and don’t just rely on the sur-

face forms of words in the text. We present a systematic comparison of various discrimination techniques

proposed by Pedersen and Bruce (1997) and Schutze (1998). Wefind that the first order method of Ped-

ersen and Bruce performs well with larger amounts of text, but that the second order method of Schutze

is more effective with smaller data sets. We also discoveredthat a divisive approach is more suitable

for clustering smaller set of contexts, while the agglomerative method performs better on larger data.

We conducted experiments to study the effect of using various sources of training, and found that local

contexts of a word provide better discrimination features than a running text like complete newspaper

articles. We compared the performance of our knowledge–lean method against that of a knowledge–

intense approach, and found that although the latter was successful in conjunction with smaller datasets,

it didn’t show significant improvements with larger data. This suggests that the features learned from

a large sample of text certainly have the potential to outperform those learned from a knowledge-rich

resource like dictionary.

ix

1 Introduction

Most words in natural language have multiple possible meanings. The intended meaning of an ambiguous

word can be determined by considering the context in which itis used. Given an ambiguous word used in a

number of different contexts,word sense discriminationis the process of identifying which of those contexts

refer to the same meaning of that word. This ambiguous word under consideration is often referred to as the

target word.

When we observe a target word used in some written text, we call it an instanceof that word. The term

contextis used to refer to 2 or 3 sentences that around an instance of the target word. For example, if the

target word isShells, then word sense discrimination tries to distinguish amongthe instances ofShellsthat

refer toSea Shore Shellsversus those that refer toBomb Shellsor Unix Shells.

Approaches to this problem are often based on the strong contextual hypothesis of Miller and Charles [25],

which states that :two words are semantically related to the extent that their contextual representations are

similar. Hence the problem of word sense discrimination reduces to that of determining which instances of

a given target word are used in similar contexts.

In this thesis, we take a corpus–based machine learning approach to achieve sense discrimination. Our

algorithm first learns a set of common word patterns observedin the context of a target word in a large

sample of text, and then discriminates given instances using clustering algorithms that automatically group

together the instances using similar patterns in their contexts. The word patterns selected for making such

distinctions are referred to asfeatures. Thus, the output of a sense discrimination system shows clusters of

given text instances such that the instances grouped in the same cluster are contextually more similar to each

other than they are to the instances grouped in the other clusters. As the instances in the same cluster use the

target word in similar contexts, we can presume that they allrefer to the same meaning of that word. Thus,

each cluster is supposed to represent a single word meaning,which is used by all instances grouped in that

cluster.

Some may wonder about questions like:What if the contexts referring to the same meaning do not use same

words?or What if the contexts referring to different meanings are using the same words?These are typical

challenges faced when dealing with automatic approaches tonatural language processing, and fortunately,

there is a solid body of research upon which to draw for solutions. The first problem is due tosynonymy,

1

which means there are many different words people can use to refer to the same underlying concept. For

example, consider the following two sentences:

Apple unveiled a new family of wide–screen flat panel displays.

Apple released their largest high resolution screen ever.

These statements announce the same news without using any word in common, exceptApple which is

acting as the target word. The next question that might be raised is:How do you automatically determine

that ‘displays’ and ‘screen’ refer to the same thing?or Could you provide an online thesaurus to look for

synonyms, or a dictionary to look for meanings of these words?

Our belief is that, in general, any approach to analyzing themeaning of contexts that depends on manually

created and maintained resources will fail. Information inthe real world is dynamic, with the best example

being the World Wide Web.

Every day approximately 1.5 million pages are added to the Web. This introduces new terminology and

word usages to refer to new personalities, companies, business products, and phenomena. By contrast,

manually written dictionaries and thesauri are relativelystagnant and undergo changes very slowly over a

period of years or even decades. Such resources, while beingof very high quality, can not cope with the

rapidly changing vocabulary of this dynamic world.

For example, most dictionaries do not include the newer sense of the wordapple, as inApple Computers,

which is in fact the most frequent sense ofappleon the Web or in the news media.

The objective of this thesis is to develop a highly portable and easily adaptable methodology that learns word

meanings automatically from raw text. Thus, instead of using information from a dictionary or thesaurus,

we refer to an available corpus of electronic text, and then automatically identify which words tend to occur

together very often. According to the strong contextual hypothesis, words observed in similar contexts are

semantically related. For example, our approach will automatically determine that the wordsdisplayand

screenoften co-occur with each other or co-occur with other similar words likemonitor, resolution, color,

vision, pixels,etc. and hence are related.

While there has been some previous work in word sense discrimination (e.g. [38], [30], [31], [39], [13]),

by comparison it is much less than that devoted to word sense disambiguation. Disambiguation is distinct

2

from discrimination in at least two respects. First, the number of possible senses a target word may have

is usually not known in discrimination, while disambiguation is often viewed as a classification problem

where an instance of the target word is assigned to one of its possible senses that are pre–defined. Second,

discrimination can be achieved using no knowledge outside raw text, whereas approaches to disambiguation

often rely on supervised learning in which a system learns from manually created examples that show the

intended sense of the target word in various contexts. Text in which the instances of a target word are

manually tagged with their correct sense is referred to as sense–tagged text. The creation of sense–tagged

text is time consuming and results in a knowledge acquisition bottleneck that severely limits the portability

and scalability of systems that employ it. By contrast, wordsense discrimination can be achieved using

purely knowledge–lean unsupervised techniques that do notrely on any knowledge intensive resources

like sense–tagged text or dictionaries. Contexts are clustered based on their mutual similarities which are

completely computed from the text itself.

While this thesis mainly addresses the problem of word sensediscrimination, the techniques we discuss here

essentially apply to any task that requires clustering of similar units of text, ranging from single sentences,

to paragraphs, to entire documents. For example, one might be interested in automatically organizing their

personal emails or files into folders, or might wish to categorize news articles collected from various online

news resources according to the topic of news. One can also create clusters of related words (those used in

similar contexts) to automatically build a thesaurus or an ontology. In short, the topic of discriminating text

units based on their contextual (and hence conceptual) similarities targets a broader range of applications

from information retrieval, document clustering/indexing, text categorization, synonymy identification, au-

tomatic ontology acquisition and so on.

The various contributions of this thesis to research on wordsense discrimination are briefly summarized

below, and will be discussed in more detail throughout the thesis.

1. We compared the discrimination techniques proposed by Pedersen and Bruce [30], [31] and by

Schütze [38], [39]. We observed that there are some significant differences in their approaches and

as yet there has not been any systematic study to determine which results into better discrimination.

This thesis tries to address this question via an extensive experimental analysis.

2. We varied our discrimination experiments with respect tovarious parameters such as feature types,

3

context representations, and clustering methods to determine which combination of settings resulted

in the most accurate results. The overall objective of this thesis is to see if any particular combination

of these parameters discriminates best under all/certain conditions.

3. We observed that the nature and volume of data used for feature selection and clustering is a critical

factor in the performance of discrimination. In particular, our experiments confirmed that the quality

of features (and hence discrimination) improves considerably with increased amounts of data used for

feature selection.

4. When only small amounts of data are available for feature selection, we observed that first order

context representations that only record the information about features that actually appear in the

context do not prove very effective. This is partially due tothe inherent sparsity in natural language

text combined with a smaller feature set used to represent the contexts. In such case, we realized that

the technique of incorporating additional information about feature words into contexts (as used by

the second order context representations) considerably improves the results.

5. We observed that, sparse context representations using asmall set of features tend to have very low

similarities among most pairs of contexts. In such case, theagglomerative clustering method that

rigorously compares similarities among the contexts in a pairwise fashion doesn’t discriminate ac-

curately. On the other hand, a divisive approach to clustering as taken by the Repeated Bisections

method seems to perform better.

6. Larger amounts of data results in better features, which in turn allows for direct comparisons among

the contexts from their first order representations. We noticed that with the better quality of features,

additional information as included by the second order contexts is not necessary or in fact deteriorates

the performance by obscuring distinctions among the contexts referring to different senses.

7. With a sufficient amount of data, the successive comparisons done by the agglomerative clustering

method prove more effective than the hybrid partitional approach taken by the Repeated Bisections

method.

8. We conducted experiments by selecting features from two types of datasets; local data which is simply

a collection of contexts around a specific target word, and global data like newspaper text where a

4

target word may not appear in every context. Our results showed that the global data though was used

in a very large quantity didn’t prove to be as useful as the smaller amount of local data.

9. We compared the results of our knowledge–lean approach against those obtained with a more knowledge–

intensive method that incorporated actual dictionary meanings of feature words into contexts. We

observed that this knowledge–intensive technique only proved more accurate than the experiments

conducted with smaller data. This confirmed our hypothesis that features learned from a large text

have the potential to outperform those learned from a knowledge rich resource like a dictionary.

10. We have developed an open source software package calledSenseClusters that is freely distributed

under the GNU Public License. All experiments reported in this thesis can be re-created using the

programs and scripts provided in this package. The interested reader is encouraged to download and

examine the package fromhttp://senseclusters.sourceforge.net .

5

2 Background

Clustering methods divide a given set of objects into some number of meaningful clusters, where objects

grouped into the same cluster are more similar to each other than they are to objects in other clusters.

Clustering is distinct from classification, in that the latter is the problem of assigning an object to one of a

pre–defined set of categories. Clustering uses a data–driven approach in which objects are grouped purely

based on their mutual similarities without any knowledge ofexisting classes [16] [17].

The problem of clustering can be divided into the following steps:

1. Feature Selection: identify significant attributes of objects that help to make distinctions between

various natural groupings.

2. Object Representation: convert objects to a form that is easy to process by the clustering algorithm.

3. Clustering: mutual similarities between objects are computed, and they are clustered based on these

values.

4. Evaluation: the resulting clusters can be compared relative to an existing clustering that is known to

be correct.

In the following sections we will describe each step in more detail.

We will refer to the problem of document clustering to illustrate some of the key concepts. In this problem,

a set of documents is analyzed, and those documents that are about the same or a similar topic should be

clustered together.

2.1 Feature Selection

Features are the distinguishing attributes of objects thathelp to discriminate among the objects. The choice

of features is crucial because carefully chosen informative features improve discrimination among objects,

and poorly chosen noisy features can confuse the clusteringprocess. For example, in document clustering,

one might use the most frequently occurring words or the words in the title of the document as features.

6

Though there is no single recommended strategy for feature selection that applies to all clustering problems,

there are some heuristics that can be employed that will avoid obviously bad features:

1. Features that are common to all objects can be omitted. Forinstance, ifcomputersoccurs in all

documents, it doesn’t help to distinguish among the different topics present in the documents.

2. Features that are attributes of only single object can also be avoided. This is because a clustering

algorithm looks for similarities among the objects, and an attribute characterized by a single object

will not be shared by any other object in the given collection. For example, ifpsychologyoccurs in

only one document, it can be eliminated from the feature set.

These heuristics suggest that we put some lower and upper frequency bounds on features. As such, we

specify the minimum and maximum number of objects that should exhibit a certain feature in order for it be

included in our feature set.

In document clustering, an upper limit on the number of timesa word occurs will automatically exclude

many high frequency (low information content) words likethe, is, are, of, and to. In addition, very rare

words can also be excluded, since they provide a level of detail that is too fine grained for making topic

distinctions.

2.2 Object Representation

Once the set of features is selected, the value of each feature is measured for each object. Features may be

numeric or strings.

In the case of binary features, the value is 1 if the feature occurs, and 0 if it does not. These are typically

used for features that represent whether or not a particularword occurs in a document. Numeric features

may also have integer or real values. For example, an integerfeature could record the number of times a

particular word occurs in a document.

String valued features can be very descriptive. For example, suppose we have a feature that indicates the

origin of a document (’documentsource’). It might have possible values such asnewspaper, journal, book,

web,andconference-proceedings, all of which describe where a document originally appeared.

7

For string valued features, it is common practice to assign numeric identifiers to these features, in the inter-

ests of computational convenience and to reduce storage requirements. So rather than storing and manipu-

lating these strings, we identify them by numeric values, such thatnewspaperbecomes 1,journal becomes

2, bookbecomes 3, and so forth.

Real valued features are useful when making more precise measurements than integers or binary features

allow. For example, suppose instead of using single word features, we now have features that represent

two word sequences (bigrams) that occur in computer relateddocuments such assoftware engineering,

information technology, operating system, computer architecture,or network security. A real valued feature

can represent the scores of measures of association such as the log–likelihood ratio or mutual information.

Selected features can be viewed as the dimensions of a multi-dimensional space in which given objects can

be represented either as vectors or as points. The feature values then define the values of vector components

or point co-ordinates.

Consider a simple 2-D space formed by the featurescomputersandfinance. Suppose in document1 that we

observe featurecomputers3 times andfinanceonce (in other words, the value of these features is 3 and 1,

respectively). Then suppose in document2 thatcomputersoccurs twice andfinanceoccurs 4 times. Given

this scenario, we can view document1 as a vector (3i + 1j) and document2 as (2i + 4j), which is shown

in Figure 1. In co-ordinate space, document1 can be seen as the point (3, 1), while document2 as the point

(2, 4), as shown in Figure 2.

When features are binary, objects can be represented as setsor unordered lists of features that are attributes of

that object. For example, if a document includes the termsfirewall, security, recovery, virus, authentication,

and encryption, then the set representation of this document will be (firewall, security, recovery, virus,

authentication, encryption). Such a feature set can also be viewed as a sparse binary vector in the feature

space that is formed by the union of all the object’s feature sets.

2.3 Measuring Similarities

The objects to be clustered can be represented as vectors, points or sets in the feature space. The next step

is to compute their mutual similarities. There are a varietyof well known measures that can be employed,

and we briefly review them below.

8

computers

finance

doc1

doc2

Figure 1: Vector Representations of Objects

computers

finance

doc1

doc2

Figure 2: Point Representations of Objects

9

2.3.1 Real-Valued Feature Space

These measures are employed with real–valued feature spaces, and can also be used with integer or binary

feature spaces.

Cosine Similarity Coefficient This measure requires that objects be represented as vectors, and measures

their similarity by taking the cosine of the angle between two vectors:

COS(
→

P ,
→

Q) =

→

P ·
→

Q

|
→

P ||
→

Q |
(1)

where
→

P and
→

Q are each feature vectors associated with a particular object.

Objects that have similar feature values will be closer in the space and have a smaller angle between their

vectors, which results in a higher cosine value. If the two vectors are identical, cosine is 1. On the other

hand, if the vectors do not share any features then the cosineis 0.

Object vectors are often normalized so that a vector with a large scale does not dominate the other vectors:

| →v | =

√

√

√

√

N
∑

i=1

v2
i (2)

normalized(
→

v) =

→

v

| →v |
(3)

The first equation above shows the norm of the vectorv.

If vectors P and Q in equation 1 are normalized as shown by equation 3 then

|
→

P | = |
→

Q | = 1. (4)

Then, the cosine of the angle between the two vectors reducesto their dot product:

COS(
→

P,
→

Q) =
→

P ·
→

Q (5)

10

Example If
→

v1= (0.4, 0, 0.07, 0.348, 0) (6)

and
→

v2= (0.32, 0.1, 0, 0.593, 0.2) (7)

then

COS(
→

v1,
→

v2)

=
0.4 × 0.32 + 0 × 0.1 + 0.07 × 0 + 0.348 × 0.593 + 0 × 0.2√

0.42 + 0 + 0.072 + 0.3482 + 0 ×
√

0.322 + 0.12 + 0 + 0.5932 + 0.22

=
0.128 + 0 + 0 + 0.206364 + 0√

0.286004 ×
√

0.504049

=
0.334364

0.534793 × 0.709964

= 0.880638

Euclidean Distance This measure computes the spatial or straight line distancebetween two points in a

N-Dimensional space:

d = Dist(P,Q) =

√

√

√

√

N
∑

i=1

(Pi − Qi)2 (8)

Then similarity between objects can be expressed in terms oftheir distance [17]:

Sim(P,Q) =
1

1 + d
(9)

If the objects are exactly identical, distance between themwill be 0 and similarity will be 1. Distance is not

normalized and hence distance increases as the objects movefarther from each other.

Example If P=(0.4, 0, 0.07, 0.348, 0) and Q=(0.32, 0.1, 0, 0.593, 0.2), then

Dist(P,Q) =
√

(0.4 − 0.32)2 + (0 − 0.1)2 + (0.07 − 0)2 + (0.348 − 0.593)2 + (0 − 0.2)2

=
√

0.0064 + 0.01 + 0.0049 + 0.060025 + 0.04

11

=
√

0.121325

= 0.348317

2.3.2 Binary-Valued Feature Space

These measures operate in binary-valued feature space and assume that the objects to be clustered are rep-

resented as sets.

Match Coefficient This takes the set intersection of a pair of feature sets and indicates how many features

are shared by the two sets. In short, it is the cardinality of the intersection of the two feature sets.

Match(P,Q) = |P ∩ Q| (10)

Example If P={film, story, actor, photography, theater, picture, stage} and Q={story, theater, perform,

actor}, then,

Match(P,Q) = |P ∩ Q| = |{story, actor, theatre}| = 3 (11)

Dice Coefficient This divides the cardinality of the intersection of the two sets by the sum of their lengths.

This measure is normalized to the[0, 1] scale by multiplying by 2.

This measure attempts to account for the size of the sets being compared, in addition to simply determining

how many features match:

Dice(P,Q) =
2 × |P ∩ Q|
|P | + |Q| (12)

Example If P={film, story, actor, photography, theater, picture, stage} and Q={story, theater, perform,

actor}, then,

Dice(P,Q) =
2 × |P ∩ Q|
|P | × |Q|

=
2 × 3

7 + 4

12

=
6

11

= 0.5455

Jaccard Coefficient This divides the cardinality of the intersection of the two sets by the cardinality of

their union. The objective of this measure is to give lower similarity scores to long sets that have smaller

intersections.

Jaccard(P,Q) =
|P ∩ Q|
|P ∪ Q| (13)

Example If P={film, story, actor, photography, theater, picture, stage} and Q={story, theater, perform,

actor}, then,

Jaccard(P,Q) =
|P ∩ Q|
|P ∪ Q|

=
3

8

= 0.375

Overlap Measure This divides the cardinality of the intersection by the minimum of the two set lengths.

This measure accounts for the case when one of the sets is smaller than the other, and gives a higher score

to smaller overlaps in such a case. The maximum value of this measure is 1, and this value is reached if one

of the sets is a subset of the other.

Overlap(P,Q) =
|P ∩ Q|

min(|P |, |Q|) (14)

Example If P={film, story, actor, photography, theater, picture, stage} and Q={story, theater, perform,

actor}, then,

Overlap(P,Q) =
|P ∩ Q|

min(|P |, |Q|)

=
3

min(7, 4)

13

=
3

4

= 0.75

2.3.3 Similarity Matrix

The pairwise similarities between N objects are often represented in a N x Nsimilarity matrix. The rows

and columns of such a matrix represent the objects, and the cell value at(i,j) indicates the similarity between

the pair of the objects at the corresponding indices.

Table 1 shows an example of a matrix representing pairwise similarities between 5 documents. Note that a

similarity matrix is always symmetric because the similarity of pair (i,j) is same as the similarity of pair (j,i).

D1 D2 D3 D4 D5

D1 1 0 0 0.21 0.3

D2 0 1 0.63 0.42 0

D3 0 0.63 1 0.35 0.2

D4 0.21 0.42 0.35 1 0

D5 0.3 0 0.2 0 1

Table 1: Similarity Matrix for 5 Document Example

This matrix can also be viewed as a graph (Figure 3) withN vertices andNNZ
2

edges, whereNNZ=Total

number of non-zero values in the similarity matrix. The vertices of this graph represent the given objects

while the edges connect pairs that have non-zero similarityvalues. This results in a space efficient sparse

representation, since any pairs with a similarity of 0 do nothave an edge connecting them.

2.4 Dimensionality Reduction via SVD

Suppose we have a collection of 8 documents taken from computer and medical journals. Table 2 shows

a document by term matrix in which rows represent the documents and columns represent the terms (i.e.,

words or word sequences) that occur in these documents.

Each cell entry at (i, j) indicates the frequency of the term represented by thejth column in the document

14

D2

D3

D4

D1

D5

0.63

0.42
0.35

0.3

0.21

0.2

Figure 3: Graphical Representation of Objects

apple blood cells ibm data desktop tissue graphics memory organ plasma

C1 2 0 0 1 3 1 0 0 0 0 0

M1 0 3 0 0 0 0 2 0 0 2 1

C2 1 0 0 2 0 3 0 1 2 0 0

M2 0 2 1 0 0 0 2 0 1 0 1

M3 0 0 3 0 2 0 2 0 2 1 3

C3 0 0 0 2 3 0 0 1 2 0 0

C4 2 0 0 1 3 2 0 1 1 0 0

C5 0 0 0 2 3 4 0 2 0 0 0

Table 2: Document by Term Association Matrix

represented by theith row. Note that the names of medical documents start with M while those of the com-

puter documents start with C. The rows of the matrix can be viewed as the vectors or point co-ordinates that

represent the corresponding documents in the 11-Dimensional space formed by the selected term features.

One limitation of this representation is that it fails to address the problems of polysemy (a single term with

multiple meanings) and synonymy (multiple terms having thesame meaning) inherent in natural languages.

Notice in table 2 that, ambiguous words like apple, tissue, organ are represented with a single dimension.

If the similarities between the documents are computed by literally matching their features, this can result

in false or mistaken matching. This might cause unrelated documents to receive artificially high similarity

15

scores, and hence be grouped together. Instead, we want to distinguish between the documents that use the

same terms but with different meanings.

Another limitation of this object representation is that itgives synonymous features separate dimensions.

For example, the wordsblood andplasma, as shown above. In practice, we may not want to make fine

distinctions in their meanings and would want to call the documents similar even if one uses the termblood

and other usesplasma. In other words, we want to recognize the use of synonyms, so that we do not

artificially distance two closely related documents that happen to choose different words to represent the

same meaning.

Fortunately, Latent Semantic Indexing (LSI) [4] [3] and Latent Semantic Analysis (LSA) [10] [19] address

both polysemy and synonymy. Specifically, LSI/LSA use a dimensionality reduction technique called Sin-

gular Value Decomposition (SVD) [2] that causes dimensionsassociated with synonyms to come together,

and differentiates between the various meanings of a polysemous word.

SVD decomposes any rectangular (m x n) matrix into the product of 3 matrices:

SV D(A) = UDV ′ (15)

where, matrices U and V contain the left and right singular vectors of A and D is a matrix of singular values

of A [40].

Properties of U, D and V U and V represent the orthonormal basis for the column and rowspan of A,

which means,

1. The columns of U and V are orthogonal. All columns of U (and V) are linearly independent and the

dot product of any two columns is 0.

2. The norm of each column of U (and V) is 1.

3. U and V form the basis for span of row and column space of A, meaning all columns of U and V are

linearly independent and all columns(rows) of A can be represented by some linear combinations of

columns(rows) of U(V).

16

0.35 0.09 -0.20 0.52 -0.09 0.40 0.02 0.63 0.20 -0.00 -0.02

0.05 -0.49 0.59 0.44 0.08 -0.09 -0.44 -0.04 -0.60 -0.02 -0.01

0.35 0.13 0.39 -0.60 0.31 0.41 -0.22 0.20 -0.39 0.00 0.03

0.08 -0.45 0.25 -0.02 0.17 0.09 0.83 0.05 -0.26 -0.01 0.00

0.29 -0.68 -0.45 -0.34 -0.31 0.02 -0.21 0.01 0.43 -0.02 -0.07

0.37 -0.01 -0.31 0.09 0.72 -0.48 -0.04 0.03 0.31 -0.00 0.08

0.46 0.11 -0.08 0.24 -0.01 0.39 0.05 -0.75 0.08 -0.00 -0.01

0.56 0.25 0.30 -0.07 -0.49 -0.52 0.14 0.07 -0.30 0.00 -0.07

Table 3: Matrix U

A k = U k V kD k

k

k

k

* *

Figure 4: Reducing a Matrix to K Dimensions with SVD

The number of columns in U and V are referred to as the dimensionality of the column and row space of A.

D is a diagonal matrix where all entries except the diagonal are zeros. The diagonal values of D are called

singular values which show the significance of each dimension in the corresponding column and row space

of A. For further computational ease, diagonal values of D are arranged in the descending order.

Tables 3, 4 and 5 show the matrices U, D and V obtained after performing SVD on matrix A (table 2).

When multiplying matrices U, D and V’, the original matrix A is returned. However, the goal of LSI/LSA

is not to simply recover the original matrix, but rather to get a reduced matrix that contains much the same

information, but represented in fewer dimensions (say k). This is achieved by selecting first k significant

singular values from matrix D or by setting all its diagonal entries beyond k+1 to 0s. This has the effect of

reducing the dimensionality of matrix A to k dimensions.

Figure 4 shows how matrices U, D and V’ are truncated to obtainthe best approximation of matrix A (Ak)

in k dimensions where k< rank(A).

17

9.19 0 0 0 0 0 0 0 0 0 0

0 6.36 0 0 0 0 0 0 0 0 0

0 0 3.99 0 0 0 0 0 0 0 0

0 0 0 3.25 0 0 0 0 0 0 0

0 0 0 0 2.52 0 0 0 0 0 0

0 0 0 0 0 2.30 0 0 0 0 0

0 0 0 0 0 0 1.26 0 0 0 0

0 0 0 0 0 0 0 0.66 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Table 4: Matrix D

0.21 0.08 -0.04 0.28 0.04 0.86 -0.05 -0.05 -0.31 -0.12 0.03

0.04 -0.37 0.57 0.39 0.23 -0.04 0.26 -0.02 0.03 0.25 0.44

0.11 -0.39 -0.27 -0.32 -0.30 0.06 0.17 0.15 -0.41 0.58 0.07

0.37 0.15 0.12 -0.12 0.39 -0.17 -0.13 0.71 -0.31 -0.12 0.03

0.63 -0.01 -0.45 0.52 -0.09 -0.26 0.08 -0.06 0.21 0.08 -0.02

0.49 0.27 0.50 -0.32 -0.45 0.13 0.02 -0.01 0.31 0.12 -0.03

0.09 -0.51 0.20 0.05 -0.05 0.02 0.29 0.08 -0.04 -0.31 -0.71

0.25 0.11 0.15 -0.12 0.02 -0.32 0.05 -0.59 -0.62 -0.23 0.07

0.28 -0.23 -0.14 -0.45 0.64 0.17 -0.04 -0.32 0.31 0.12 -0.03

0.04 -0.26 0.19 0.17 -0.06 -0.07 -0.87 -0.10 -0.07 0.22 -0.20

0.11 -0.47 -0.12 -0.18 -0.27 0.03 -0.18 0.09 0.12 -0.58 0.50

Table 5: Matrix V

18

0.05 -0.49

0.35 0.13

0.08 -0.45

0.29 -0.68

0.37 -0.01

0.46 0.11

0.56 0.25

Table 6: Truncated Matrix U

9.19 0

0 6.36

Table 7: Truncated Matrix D

Tables 6, 7 and 8 show the matrices U, D and V truncated after retaining the top two dimensions. On

multiplying the truncated forms of U, D and V’, we getAk as shown in table 9.

Note that most of the zeros in the original matrix (table 2) are now smoothed to some non-zero values. Thus,

SVD has a smoothing effect which assigns some non-zero values to features that do not actually occur in

the documents but occur in similar documents. In Table 2, thetermblood does not occur in the document

M3 but after SVD (see table 9), this term gets a higher score (1.7). This is because document M3 contains

medical terms likeplasmaandcells, and all other documents that contain these terms also include blood.

The same is true for the termapple that doesn’t actually appear in C5 but still gets a high scoreof 1.22

after SVD. This shows how SVD can improve the similarity score between texts that may use different

terminology for the same concepts.

The reduced matrix no longer represents the actual words that occur in a text, but rather dimensions that

suggest underlying concepts. This has the effect of converting a word level feature space into a concept

level semantic space which allows computations based on conceptual meanings of terms rather than their

surface forms.

19

0.21 0.08

0.04 -0.37

0.11 -0.39

0.37 0.15

0.63 -0.01

0.49 0.27

0.09 -0.51

0.25 0.11

0.28 -0.23

0.04 -0.26

0.11 -0.47

Table 8: Truncated Matrix V

apple blood cells ibm data desktop tissue graphics memory organ plasma

C1 0.73 0.00 0.11 1.25 2.00 1.72 0.01 0.86 0.77 0.00 0.09

M1 0.00 1.18 1.27 0.00 0.33 0.00 1.63 0.00 0.85 0.84 1.51

C2 0.76 0.00 0.01 1.32 2.04 1.83 0.00 0.91 0.72 0.00 0.00

M2 0.00 1.08 1.19 0.00 0.49 0.00 1.52 0.00 0.86 0.77 1.41

M3 0.21 1.70 1.97 0.35 1.73 0.18 2.45 0.18 1.74 1.24 2.32

C3 0.73 0.15 0.39 1.25 2.17 1.68 0.35 0.85 0.98 0.17 0.41

C4 0.96 0.00 0.16 1.65 2.65 2.27 0.03 1.13 1.02 0.00 0.13

C5 1.22 0.00 0.00 2.11 3.21 2.95 0.00 1.46 1.08 0.00 0.00

Table 9: Document by Term Matrix after SVD

20

2.5 Clustering Algorithms

Clustering algorithms can be divided into three main groups, based on the methodology they employ.Hi-

erarchical methodsperform a series of merging or splitting operations to create clusters, whilepartitional

techniquesavoid pairwise operations and divide the set of objects intoa given number of clusters, and then

iteratively refine those clusters.Hybrid methodsincorporate ideas from both.

Clustering algorithms can also be classified into three maincategories based on the object representation they

use. Vector spacemethods directly cluster feature vectors, whilesimilarity basedmethods convert feature

vectors into a similarity matrix where each cell contains a similarity measure for a pair of feature vectors.

Graph basedmethods represent objects as graphs, and use graph partitioning techniques to cluster them.

This thesis only concerns vector and similarity methods, but not graph based approaches. The interested

reader is encouraged to consult [1], [42] for more information about the latter.

In all these methods, the number of clusters to be created caneither be explicitly specified or automatically

derived by the algorithm. We take the former approach in thisthesis, although automatically determining

the optimal number of clusters is an important area of futurework.

In this thesis we limit our discussion tohard clusteringalgorithms that assign each object to at most one

cluster. There are also soft (fuzzy) clustering methods [16] that determine the degree of membership of each

object in each cluster, but those are not included here.

The following sections describe several widely used hierarchical and partitional methods, and shows that

they can often be applied in either vector or similarity space.

2.5.1 Hierarchical

Hierarchical methods can be divided into two classes.Agglomerativemethods merge a pair of clusters at

each iteration, whiledivisivemethods split a cluster into two at iteration.

Agglomerative methods start with each object in a separate cluster, so that if there are N objects, the al-

gorithm begins with N initial clusters. The most similar clusters are merged during each iteration until the

desired number of clusters are obtained. Divisive methods work in the opposite fashion and initially start

with all objects in a single cluster. During each iteration,a cluster containing the least similar objects is split

21

d1 d2 d3 d4 d5 d6

Figure 5: Example of Dendogram

into two. This continues until the required number of clusters are formed.

The clusterings found by agglomerative and divisive methods can be represented in a tree structure known

as adendogramthat shows the clusters as found at each iteration of the algorithm. At the top-most level,

the dendogram tree shows a single cluster containing all objects, while at the bottom-most level, there are

as many leaf nodes as there are objects to be clustered. The dendogram tree can be used to retrospectively

examine the progress of the clustering algorithm, and may shed insights into where clustering could be

stopped to achieve optimal results.

Figure 5 shows an example of a dendogram tree where there are atotal of 6 objects being clustered:{d1, d2,

d3, d4, d5, d6}. Objects d4 and d5 are merged in the first iteration (read the tree in Figure 5 in bottom-up

fashion). In the 2nd iteration of clustering, object d3 is merged with the cluster containing (d4, d5). Then,

objects d1 and d2 are clustered in the next iteration to form asingle cluster (d1, d2). After that, clusters (d1,

d2) and (d3, d4, d5) are merged. Finally, object d6 joins the cluster (d1, d2, d3, d4, d5).

The decision as to which clusters should be split or merged during an iteration is dictated by a criteria

function [44], which determines which clusters are most or least similar. The most widely used criteria

functions for hierarchical methods are single link, complete link and average link.

In the agglomerative approach, the single link criteria chooses the pair of clusters with the minimum dis-

tance between their nearest members for merging, while, thecomplete link criteria selects the pair with the

22

Single Link

Complete Link

Average Link Average Link

Complete Link

Single Link

AGGLOMERATIVE DIVISIVE

Figure 6: Single, Complete and Average Link Clustering

minimum distance between their farthest members. The average link method merges the pair of clusters

that has the minimum average pairwise distance between the members. Note that objects with the minimum

distance are considered to be the most similar.

In the divisive approach, the single link criteria chooses the cluster with the maximum distance between its

nearest members for splitting while the complete link method selects the cluster with the maximum distance

between its farthest members. The average link method splits the cluster with the maximum average pairwise

distance between all pairs of its members.

Figure 6 shows how the single, complete and average link criteria select the pair of clusters for merging

and a cluster for splitting. In the single link diagram, notethat the two objects that are closest to each other

are used for determining the amount of similarity between the two clusters, while in complete link it is the

furthest pair of objects. Average link clustering measuresthe distance between the centroids of the two

clusters to determine similarity.

Each of the two possible object representations can be employed in hierarchical clustering.

In vector space, there are N initial vectors for the N objects, each representing its own cluster. During each

iteration, the clusters to be merged or split are selected according to the chosen criteria function. Note that

23

the distance between a pair of vectors is determined by the angle between them, while similarity is measured

by the cosine of this angle.

In similarity space, the input to the clustering algorithm is a similarity matrix that represents the pair–wise

similarities between the given objects. Thus, N objects arerepresented in a N x N dimensional similarity

matrix, whose rows and columns represent the initial N clusters. During each iteration, the clusters to be

merged or split are chosen according to the selected criteria function. After merging, the similarity matrix

is updated to show the similarities between the newly mergedcluster and all other clusters in the collection

according to the selected criteria function.

2.5.2 Partitional

Partitional algorithms divide the entire set of objects into a pre-determined number of clusters (say K)

without going through a series of pair-wise merging or division steps. Unlike hierarchical methods, the

clusters created during subsequent iterations are not related to those in the previous or next iterations. These

methods are preferred on larger datasets due to their lower computational requirements ([9], [20]), as they

do not require an exhaustive series of pairwise comparisonslike the agglomerative methods do. The best

known example of a partitional algorithm is the K-means clustering algorithm.

Partitional methods can be carried out on objects that are represented in vector or similarity space.

In vector space, the centroid of any cluster is the average ofall the vectors that belong to that cluster. K-

means initially selects K random vectors to serve as the centroids of the initial K clusters. It then assigns

every other vector to one of the K clusters whose centroid is closest to that vector. After all vectors are

assigned, the cluster centroids are re-computed by averaging all the vectors assigned to the same cluster.

This repeats until convergence, that is until no vector changes its cluster across iterations, or in other words,

when the centroids stabilize.

In similarity space, each object can be seen as a point in space such that the distance between any two points

is a function of their similarity. Initially, each point is in its own cluster and represents the center of that

cluster. During the first iteration, K-means selects K random points as K centers of the initial K clusters and

assigns every other point to one of these K clusters that is closest to that point. Once all points are assigned

to the clusters, the cluster centers are re-computed by taking the average of all points in the cluster. This is

24

repeated until convergence.

2.5.3 Hybrid Methods

It is generally believed that the quality of clustering by partitional algorithms is inferior to that of the ag-

glomerative methods. However, recent studies by [46], [45]have shown that these conclusions were based

on limited experiments conducted with smaller data sets andthat with larger data sets, partitional algorithms

are not only faster but also lead to better results.

In particular Zhao and Karypis recommend a hybrid approach known as Repeated Bisections. This over-

comes the main weakness of partitional methods, which is theinstability in clustering solutions due to the

choice of the initial random centroids. Repeated bisections method starts with a single cluster of all objects.

At each iteration, a cluster whose bisection optimizes the chosen criteria function is selected for bisection.

The cluster is bisected using the standard K-means method with K=2, while the criteria function maximizes

the similarity between each object and the centroid of the cluster to which it is assigned [45]. As such this

is a hybrid method that combines hierarchical divisive approach with partitional K-means method.

2.6 Evaluation

There are three techniques for evaluating the performance of clustering methods; external, internal and

relative evaluation [16].

In this thesis, we focus on external evaluation metrics thatdetermine clustering accuracy by comparing the

solution against gold standard data for which true classification of the objects is available. This method

of evaluation allows one to estimate in advance how the selected methodology will perform when used on

real-life data whose true classification is unknown. While external evaluation requires knowledge of the true

classification of objects, this information is not used at any point before evaluation, it is held out from the

clustering or feature selection process.

Internal evaluation techniques are purely based on the metrics like intra-cluster and inter-cluster similarity

and standard deviation among the clusters that do not use anyknowledge about the existing categories.

Relative evaluation techniques compare the solutions created by two different clustering methods. In this

25

science arts sports financeR-Total

C1 2 0 3 10 15

C2 1 1 7 1 10

C3 6 1 1 2 10

C4 2 15 1 2 20

C-Total 11 15 12 15 55

Table 10: Confusion Matrix before Column Re-ordering

thesis we focus on external evaluation, and will not furtherdiscuss internal or relative evaluation techniques.

2.6.1 Column Reordering Method

Our external evaluation technique was suggested by [30]. Itrequires that we build a cluster by class dis-

tribution matrix which is known as aconfusion matrix.The rows of this matrix represent the discovered

clusters while columns represent the actual classes in the given gold standard. A cell value at (i,j) indicates

the number of objects in the cluster represented by theith row that belong to the class represented by thejth

column.

Figure 10 is an example of a cluster by sense matrix which shows the distribution of 55 objects (i.e., the

value in the last row and last column) in 4 clusters (C1, C2, C3, C4). The first row indicates that there

are a total of 4 categories (science, arts, sports, finance) in gold standard data. The last column shows the

row marginal totals, which are the total number of objects ineach cluster. The last row shows the column

marginals, which are the total number of objects belonging to each category in gold standard. Each cell

value at (i,j) indicates the number of objects in theith cluster that belong to the category represented by the

jth column according to gold standard.

Accuracy is then computed by re-ordering the columns of the confusion matrix so that the diagonal sum

is maximized. With each re-ordering, we indeed assign a class label to each cluster and then choose the

mapping that results into the maximum number of objects in their true classes. The diagonal sum for each

possible mapping scheme shows the number of objects in theircorrect classes if the clusters are labeled

according to that mapping scheme. Table 11 shows the same cluster by sense distribution matrix shown in

26

finance sports science artsR-Total

C1 10 3 2 0 15

C2 1 7 1 1 10

C3 2 1 6 1 10

C4 2 1 2 15 20

C-Total 15 12 11 17 55

Table 11: Confusion Matrix after Column Re-ordering

table 10 after reordering columns to get the maximal cluster–class mapping. Specifically, the matrix in table

11 shows that the maximal labeling scheme labels cluster C1 with finance, cluster C2 withsports, C3 with

scienceand C4 witharts. In other words, cluster C1 represents thefinancecategory, cluster C2 represents

thesportscategory and so on...

The problem of finding the maximally accurate mapping of class labels to clusters is equivalent to the

Assignment Problem in Operations Research or the Maximal Bipartite Matching problem in Graph Theory

[18] [27].

2.6.2 Measuring Precision and Recall

Once the confusion matrix is created, the accuracy of clustering can be computed using precision and recall.

Precision is defined as the ratio of the number of objects in their correct classes divided by the number

of objects attempted by the clustering algorithm. Rememberthat, an algorithm might not cluster all the

given objects, especially the objects that do not share any feature with any other object will be put into

singleton clusters. These are counted as the un-clustered objects during evaluation. Thus, the number of

objects attempted by the algorithm (denominator in precision) is obtained by subtracting the un-clustered

objects from the total number of objects. The number of objects correctly clustered (numerator) is the sum

of the diagonal values of the column-reordered confusion matrix corresponding to the maximal mapping

arrangement.

Thus, if we refer back to table 11, we can see that the diagonalsum is 38 (10 + 7 + 6 + 15), which indicates

that 38 objects are in their correct categories. The total number of objects in the matrix is 55, which is the

27

number of objects the algorithm placed in clusters. Given these values, precision is computed as follows:

precision =
38

55
= 0.69 (16)

Recall is computed by dividing the number of objects correctly clustered by the total number of objects.

Thus, recall is always less than or equal to the precision value, as the denominator of recall will always be

greater than or equal to that of the precision, having the same numerator.

For the confusion matrix in 11, let’s assume that there were atotal of 57 objects and our clustering algorithm

clustered only 55 of them. This means that there were 2 objects that our clustering algorithm was unable

to place in a cluster. The total number of objects correctly clustered remains 38, and the total number of

objects that were given to the algorithm is 57. Recall is thencomputed as follows:

recall =
38

57
= 0.67 (17)

Precision and recall provide two separate measures of clustering performance. The F-measure is a single

value that combines these two by taking two times the harmonic mean of precision and recall. Given the

previous values of precision and recall, the F-measure is computed as follows:

F = 2 × precision × recall

precision + recall

F = 2 × 0.69 × 0.67

0.69 + 0.67

F = 2 × 0.34

F = 0.68

2.6.3 Entropy and Purity

Entropy and purity are two fairly standard external evaluation measures that are used in clustering. We

employ both of these after carrying out the column re–ordering method described above.

Entropy takes into account the distribution of objects in each cluster belonging to each class in gold standard.

28

A cluster made up predominantly of objects from a single class will have low entropy, while a cluster made

up of a mixture of objects from multiple classes will have higher entropy.

The following formula computes the entropy of a clusterCr made up of a total ofnr objects. ni
r is the

number of objects in clusterCr that belong to theith class, while,t is the total number of classes in the gold

standard.

E(Cr) = − 1

log t

t
∑

i=1

ni
r

nr

log
ni

r

nr

(18)

Assuming that there are a total of n objects grouped into k clusters then the following must be true:

k
∑

r=1

nr = n (19)

Thus, for the confusion table in 11, the value of n is 55, and t is 4. Then the entropy of each cluster can be

computed as follows:

E(C1) = − 1

log 4
[(

10

15
× log

10

15
) + (

3

15
× log

3

15
) + (

2

15
× log

2

15
)] (20)

= −1.661 × (−0.1174 − 0.1398 − 0.1167) (21)

= 0.6211 (22)

E(C2) = −1

4
[(

3

10
× log

1

10
) + (

7

10
× log

7

10
)] (23)

= −1.661 × (−0.3 − 0.1084) (24)

= 0.6784 (25)

E(C3) = −1

4
[(

2

10
× log

2

10
) + (

2

10
× log

1

10
) + (

6

10
× log

6

10
)] (26)

= −1.661 × (−0.1398 − 0.2 − 0.1331) (27)

= 0.7855 (28)

29

E(C4) =
1

4
[(

4

20
× log

2

20
) + (

1

20
× log

1

20
) + (

15

20
× log

15

20
)] (29)

= −1.661 × (−0.2 − 0.0651 − 0.0937) (30)

= 0.596 (31)

The total entropy of the clustering solution is computed by taking the sum of the entropies of the individual

clusters weighted by their sizes:

Etotal =
k

∑

r=1

nr

n
E(Cr) (32)

From equations 22, 25, 28 and 31, we get the total entropy of clustering solution in table 11 as follows:

E =
[(15 × 0.6211) + (10 × 0.6784) + (10 × 0.7855) + (20 × 0.596)]

55

=
9.3165 + 6.784 + 7.855 + 11.92

55

= 0.6523

A perfect solution where each object is placed into its correct class will causeni
r = nr for each cluster,

leading toE(Cr) = 0 for all r, and henceE total = 0.

Purity tells the degree to which a cluster represents the class used by the maximum number of its member

objects.

P (Cr) =
1

nr

max(ni
r) (33)

We obtain the following purity values for the confusion matrix in 11:

P (C1) =
10

15
= 0.6667

P (C2) =
7

10
= 0.7

30

P (C3) =
6

10
= 0.6

P (C4) =
15

20
= 0.75

The purity of entire solution is then computed as as the sums of the individual cluster’s purity.

Ptotal =
k

∑

r=1

nr

n
P (Cr) (34)

From equation 34, we find the purity of the solution in table 11to be:

Ptotal =
10 + 7 + 6 + 15

55
= 0.691 (35)

The best solution, whereni
r = nr for each cluster, will lead toP (Cr) = 1 for all r, hence, will haveP total =

1.

Note that purity is not equivalent to precision as describedabove, since precision requires that each class

label is assigned to a unique cluster, while purity allows for the same class label assigned to multiple clusters.

In fact, purity can be seen as a simple form of precision, where each cluster is simply assumed to represent

the class to which most of its member objects belong.

31

3 Methodology

In this thesis, we use an unsupervised clustering approach to solve the problem of word sense discrimination.

Instances of a target ambiguous word are observed in a raw corpus of text. Our goal is then to identify which

instances refer to the same meaning of that word. As hypothesized by [25], instances referring to the same

meaning will often use similar contextual words. Thus, wordsense discrimination becomes the task of

grouping together the instances of the target word that are used in similar contexts. The objects that we

cluster are the contexts around the instances of a target word and the features that we use to represent these

contexts are the words or word sequences frequently observed in the context of that word. Here, we assume

that the scope of the contexts is limited to 1-2 sentences around an instance of the target word.

The following sections discuss the specific methodology of our solution.

3.1 Identifying Features from Raw Text

The instances of a target word whose contexts are to be clustered make up thetest data. This is sometimes

also referred to as theevaluation data. We want to represent the test instances by their most salient or

discriminating features. There are a number of decisions that must be made in doing this. First, from what

data will we identify features. Second, how will we actuallyextract the features from that data.

3.1.1 Feature Selection from Test or Training

The features used to represent test instances may be selected from that same test data, or those features

may be obtained from a separate held–out corpus that is referred to as thetraining data. The decision as to

whether to use the same data or held–out data for feature extraction depends on a number of factors.

If the test data is fairly large, and if there is no separate training data readily available, then it may make

sense to simply identify the features from the test data. This is fairly common in clustering applications in

general.

In our experiments, we use a separate training data, partially because we assume that the size of the test data

will not be always sufficient to select a good set of features.Also, the use of held–out training data allows

32

us to try different variations in the sources of training corpus, and see their effect on the performance of

discrimination on the same test set.

For example, suppose we apply our discrimination methodology to the problem of email–classification,

where we seek to group emails according to their topic. If we employed held–out training data, we could

cluster new emails (say for year 2004) by selecting featuresfrom old emails (say from year 2003) in the hope

to achieve similar organization. Or, if we didn’t have enough emails to provide sufficient training, we could

use some other larger email corpora such as the Enron Email Dataset (http://www-2.cs.cmu.edu/ enron/) or

newsgroup corpora such as the 20-NewsGroups (http://people.csail.mit.edu/u/j/jrennie/publichtml/20Newsgroups/)

or the archives available from Google Groups (http://groups.google.com/). On the other hand, if we want

to cluster all of our emails and we have a sufficiently large archive, then we could select features from the

same data that is to be clustered. Both options are reasonable, and depend on the particular goals of the

application.

3.1.2 Local versus Global Training

We call training datatarget-specificor local if every context in the training data includes the target word.

Note that local training data corresponds to what is known aslexical sample datain the word sense disam-

biguation literature, where the corpus provides a sample ofusages for a particular word. In general, if a

large number of contexts that include a target word are available, then there are fairly clear advantages to

using that for training data (as we will show in our experimental results).

The other variation that we tried in our experiments was to use a large amount of running text, such as

newspaper corpora (e.g., the Associated Press Worldstreamor New York Times) that consists of many

complete articles and not just contexts around a specific target word. We call this method of using running

text for feature selection asglobal training.

In local training each context consists of a sentence or perhaps paragraph that contains a single instance of

the target word, while in global training a context might be aparagraph or entire article without respect to

the particular words that occur therein. Thus, in global training it is nearly certain that there will be many

contexts that do not include a particular target word.

As such a global training data provides general informationabout word usages, including those outside the

33

contexts of a specific target word. We will show that this can provide a reasonably good level of performance,

despite the fact that the training data is not specific to a particular word.

When using global training, all the data preprocessing and even some of the feature selection steps may

be performed only once and then these preprocessed results can be used with various target words or for

various kinds of experiments. Also, global training corpora are often easier to obtain than finding a large

number of instances of a specific target word as is required bylocal training.

However, a possible disadvantage of global training is thatit could introduce a large amount of noise in the

feature set. This is because the general behavior and usage of words outside the contexts of a specific target

word may not be always useful to discriminate among the senses of a particular word. However, the hope

is that the broad coverage of global training will provide additional information not present in local training

that will offset this disadvantage.

One of our objectives in this thesis is to study the effect of the nature of the training data on discrimination

accuracy. For example, using the same test data for training, splitting all of the available data into training

and test partitions, using some pre-classified training examples for clustering the new set of test instances,

or using target-specific as well as global training data.

3.2 Types of Features

The features that we use to represent the context of the target word in the test data are all surface level

lexical features. These are word–based features that can beobserved directly in whatever text is serving

as the source of features (be it the same test data or held–outtraining data). Specifically, we represent the

context in which a target word occurs using unigrams, bigrams and co-occurrences.

3.2.1 Unigrams

Unigrams are single words that occur in the same context as the target word. Our use of unigrams is

motivated by the success ofbag–of–words feature sets, which are made up of all the words found in a

sample of training data. Despite its simplicity, this feature set has proven successful in text classification

and word sense disambiguation [26].

34

Obviously there are many words in text that do not provide information about meaning of the target word,

in particular, function words like conjunctions, articles, and prepositions. As such we exclude these from

our unigram feature set by specifying these words (which areto be ignored) in astop list. Thus, in general

we hope that unigram features will primarily be content words (noun, verbs, adjectives, and adverbs) that

capture the meaning of a text.

In local training, where every training instance includes the target word, unigrams are the content words that

occur above a given level of frequency in the context of the target word. If the training data is global, where

every instance does not include a target word, unigrams are the most frequently occurring content words in

that corpus.

In our local training experiments we apply a frequency cutoff of 2 by removing unigrams that appear only

once in the training data.

Table 12 shows the top 20 most frequent unigrams (and their frequency of occurrence) as found in the

training data for the verbserve, which is a part of the SENSEVAL-2 corpus. (Note that in this thesis we

will use the diamond symbol<> to mark the end of a word.) We observe that some of the unigramspertain

to leadership positions and food, both of which relate toservein some way. This shows how unigram

features can in fact be useful for differentiating among meanings.

Table 13 shows the top 20 most frequent unigrams collected from all the SENSEVAL-2 training data (which

includesserveplus 71 other words). Here we treat the SENSEVAL-2 training corpus as a source of global

training and select unigram features without regard to any particular target word. As such the list of unigrams

is fairly generic, and does not seem to suggest any particular meanings or topics. Hence, we do not employ

unigram features when dealing with global training data.

3.2.2 Bigrams

Bigrams are typically defined as a consecutive sequence of two words. In this thesis, we extend that defini-

tion in two ways.

First, we allow a given window or number of words between the two words that make up the bigram. Thus,

our bigram features are pairs of words that occur in a given order within some distance from each other in

35

Table 12: Local Unigrams for verb Serve

WORD<> freq

president<> 194

hot<> 165

chairman<> 154

time<> 150

company<> 147

sauce<> 128

add<> 127

chief<> 122

cream<> 119

executive<> 107

million<> 102

old<> 102

minutes<> 99

chopped<> 97

purpose<> 96

butter<> 95

director<> 88

board<> 86

officer<> 84

36

Table 13: Unigram Features, Global Training

WORD<> freq

time<> 1419

people<> 1022

way<> 931

day<> 892

work<> 824

old<> 745

still<> 712

head<> 700

long<> 687

life<> 622

man<> 594

house<> 592

world<> 557

right<> 554

million<> 552

market<> 548

home<> 519

come<> 518

same<> 515

high<> 509

37

Table 14: Bigrams, Window Size of 2

WORD1<>WORD2<> n11 n1p np1

TWINKLE<>TWINKLE<> 1 2 1

TWINKLE<>LITTLE<> 1 2 1

LITTLE<>STAR<> 1 1 1

the training corpus. We specify a window of size five, meaningthat there could be at most three intervening

words between the first and the second word that make up a bigram.

Second, we use the stop list to remove any bigrams that include at least one stop word. This is referred to an

OR stop list, and is intended to restrict bigrams to being made up of two content words.

Suppose we identify and count all the bigram features in the following well known rhyme, where stop words

are shown in lower case:

TWINKLE TWINKLE LITTLE STAR

how i WONDER what you are

up above the WORLD so HIGH

like a DIAMOND in the SKY

If we use a window size of two, and thereby consider bigrams tobe two consecutive words, the resulting

bigrams from this sample of text are shown in Table 14.

The numbers following the bigrams in Table 14 are (in order):the joint frequency n11 of the bigram, the

marginal frequency n1p of WORD1, and the marginal frequencynp1 of WORD2. The joint frequency tells

how many times the bigram occurs in the corpus, while the marginal n1p tells how many bigrams there are

that begin with WORD1. The marginal np1 indicates how many bigrams end with WORD2. In other words,

n1p is the sum of all the n11 values of all bigrams whose first word is WORD1, while np1 is the sum of all

the n11 values of all bigrams whose second word is WORD2.

Note that this is the complete list of bigram features for thesample above, since other observed two word

38

Table 15: Bigrams, Window Size of 5

WORD1<>WORD2<> n11 n1p np1

TWINKLE<>LITTLE<> 2 5 2

TWINKLE<>STAR<> 2 5 3

WORLD<>HIGH<> 1 1 1

STAR<>WONDER<> 1 1 2

DIAMOND<>SKY<> 1 1 1

LITTLE<>WONDER<> 1 2 2

LITTLE<>STAR<> 1 2 3

HIGH<>DIAMOND<> 1 1 1

TWINKLE<>TWINKLE<> 1 5 1

sequences (such ashow ior i WONDER) are not considered since they include one or two stop words.

Expanding the window size has a fairly dramatic effect. For example, if we use a window of size 5 (and

thereby allow up to 3 intervening words between WORD1 and WORD2), we obtain the set of bigrams

shown in Table 15.

Note that we do not allow bigrams that span across the boundaries of a context. This means that bigrams in

which the two constituent words belong to different contexts are not counted. Thus far in our example we

have been considering the entire Twinkle, Twinkle rhyme to be one context. However, if we treat each line

as a single context and do not allow bigrams to cross line/context boundaries, we will get a different set of

bigrams as shown in Table 16.

Notice that the bigramsLITTLE<>WONDER, STAR<>WONDERandHIGH<>DIAMONDdo not appear

here as their component words appear on separate lines, which are now treated as separate contexts.

It should be noted that while we don’t require bigrams to be consecutive words, we do require them to retain

their original ordering since this often has a strong impacton meaning. For example,sharp<>razor and

razor<>sharpare distinct bigrams and may refer to different underlying meanings. Bigram features allow

us to retain those kinds of distinctions. Our use of bigrams is motivated by their recent success as features

39

Table 16: Bigrams, Window Size of 5, Each Line a Context

WORD1<>WORD2<> n11 n1p np1

TWINKLE<>LITTLE<> 2 5 2

TWINKLE<>STAR<> 2 5 3

WORLD<>HIGH<> 1 1 1

TWINKLE<>TWINKLE<> 1 5 1

DIAMOND<>SKY<> 1 1 1

LITTLE<>STAR<> 1 1 3

Table 17: Contingency Table for Bigrams

WORD2 -WORD2 RSUM

WORD1 n11 n12 n1p

-WORD1 n21 n22 n2p

CSUM np1 np2 npp

in word sense disambiguation [29].

Measures of Association for Bigrams Each bigram and its associated counts of the form

WORD1<>WORD2<>n11 n1p np1

can be converted into a 2 by 2 contingency table as shown in Table 17. Here, n11, n12, n21 and n22 are

referred to as the observed frequencies while n1p, n2p, np1,np2 are the marginal frequencies.

What follow are the specific descriptions of what each cell inthis table represents.

• n11 = number of times a bigram WORD1<>WORD2 is observed

• n12 = number of bigrams in which WORD1 is at the first position but WORD2 is not at the second

position

40

• n21 = number of bigrams in which WORD2 is at the second position but WORD1 is not at the first

position

• n22 = number of bigrams in which WORD1 is not at the first position and WORD2 is not at the second

position

• n1p = total number of bigrams in which WORD1 is at the first position (n11+n12)

• np1 = total number of bigrams in which WORD2 is at the second position (n11+n21)

• n2p = total number of bigrams in which WORD1 is not at the first position (n21+n22)

• np2 = total number of bigrams in which WORD2 is not at the second position(n22+n12)

• npp = total number of bigrams in the sample = sum of n11 scores of all bigrams

Given the marginal frequencies n1p, np1, n2p, np2, we can estimate the expected values for these values

based on the assumption that the two words are occurring in the corpus independently as follows:

• m11 = expected value of n11 = (n1p*np1/npp)

• m12 = expected value of n12 = (n1p*np2/npp)

• m21 = expected value of n21 = (n2p*np1/npp)

• m22 = expected value of n22 = (n2p*np2/npp)

Having computed all the marginal, observed and expected frequencies, we then compute the log–likelihood

ratio for each bigram as follows:

G2 = 2
∑

ij

nij × log
nij

mij

(36)

This measures the deviation between the observed and expected frequencies, and if a pair of words shows

a high deviation between these values, the words are shown not to be independent. A formal test of signif-

icance can be performed by selecting a p-value (we normally use 0.05) and seeing if the resulting score is

41

Table 18: Contingency Table for Bigram TWINKLE<>STAR

STAR -STAR RSUM

TWINKLE n11=2 n12=n1p-n11=3 n1p=5

-TWINKLE n21=np1-n11=1 n22=np2-n12=2n2p=npp-n1p=3

CSUM np1=3 np2=npp-np1=5 npp=8

greater than the corresponding critical value (3.841). This critical value comes from the chi–square distribu-

tion, based on 1 degree of freedom. Then, any bigrams whose log–likelihood score is greater than this value

will be considered as a feature (and those below will be discarded). Those bigrams with scores above the

critical value are considered to be strongly associated, and are not occurring together due to some chance

occurrence.

From the example in Table 16, we show the computation of the log–likelihood ratio for the pair

TWINKLE<>STAR<>2 5 3

Note that the value of npp is 8, which can be determined by summing all of the n11 values. With this

information, we can construct a complete 2 x 2 contingency table for bigram TWINKLE<>STAR as shown

in Table 18.

Given these observed values, the expected values can be estimated as follows:

m11 = (n1p ∗ np1/npp) = 3 ∗ 5/8 = 1.875

m12 = (n1p ∗ np2/npp) = 5 ∗ 5/8 = 3.125

m21 = (n2p ∗ np1/npp) = 3 ∗ 3/8 = 1.125

m22 = (n2p ∗ np2/npp) = 5 ∗ 3/8 = 1.875

Then the log–likelihood ration for the bigram TWINKLE<>STAR can be computed as follows:

42

G2 = 2
∑

ij

nij × log
nij

mij

= 2 × [(n11 ∗ log
n11

m11
) + (n12 ∗ log

n12

m12
) + (n21 ∗ log

n21

m21
) + (n22 ∗ log

n22

m22
)]

= 2 × [(2 ∗ log
2

1.875
) + (3 ∗ log

3

3.125
) + (1 ∗ log

1

1.125
) + (2 ∗ log

2

1.875
)]

= 0.0358

Note that this value falls well below our critical value of 3.841, so we might discard that as a feature.

However, note that this example is artificially small, usually our value of npp is much larger (in the thousands

or perhaps even millions).

Similarly, we compute the log–likelihood ratio for all other bigrams found in Table 16 and show those results

in Table 19.

Table 19: Bigram Log–Likelihood Scores

WORD1<>WORD2<> score

WORLD<>HIGH<> 6.0283

DIAMOND<>SKY<> 6.0283

TWINKLE<>LITTLE<> 2.2672

LITTLE<>STAR<> 2.2092

TWINKLE<>TWINKLE<> 1.0243

TWINKLE<>STAR<> 0.0358

Notice that on arranging the bigrams in the descending orderof their log–likelihood ratio, we get a differ-

ent ordering than if we ordered them according to their frequency count, n11. For instance, bigrams like

WORLD<>HIGH or DIAMOND<>SKYget higher log–likelihood ratios despite their smaller counts. On

the other hand, bigramTWINKLE<>STARgets the least score in spite of its higher n11 count. This is be-

cause the log–likelihood ratio doesn’t only consider the joint frequency n11, but it compares all the observed

frequencies with their corresponding expected values.

43

TWINKLE LITTLE

STAR

WORLD

HIGH

DIAMOND
SKY

2

2

1

1

1

1

Figure 7: Graphical Representation of Bigrams

Graphical Models of Bigrams Figure 7 shows a graphical representation of bigrams that werefer to as

a bigram graph. Each vertex of this graph represents a word, and an edge joining vertex X to Y represents

the bigram X<>Y. The edges are weighted and the weights may indicate eitherthe frequency counts or

statistical scores of association between the corresponding pair of words. In this figure, we use the simple

joint frequency counts of bigrams as weights. Notice that edges X<>Y and Y<>X could have different

scores as they represent different bigrams.

For each bigram of the formWORD1<>WORD2<>n11 n1p np1shown in Table 16, the marginal frequency

of WORD1 (n1p) is the same as the out–degree of WORD1 in the corresponding bigram graph shown in

Figure 7. Recall that this is the sum of n11 counts of all bigrams having WORD1 at the first position.

Similarly, the marginal frequency of WORD2 (np1) is the sameas the in–degree of WORD2 in the bigram

graph. This indicates the sum of n11 counts of all bigrams that have WORD2 at the second position.

Vector Space Model of Bigrams The bigrams as shown in figure 7 are internally stored in an adjacency

matrix, which is formatted as shown in Table 20. We refer to this as a bigram matrix. The rows of a

bigram matrix represent the words that have a non-zero out-degree in the corresponding bigram graph,

while columns represent the words that have a non–zero in–degree. The cell value at (i,j) in the bigram

graph shows the score associated with the bigram WORDi<>WORDj, since theith row represents WORDi

and thejth column represents WORDj. Thus, eachith row of the bigram matrix can be viewed as a bigram

44

Table 20: Bigram Matrix

LITTLE STAR HIGH TWINKLE SKY

TWINKLE 2 2 0 1 0

WORLD 0 0 1 0 0

DIAMOND 0 0 0 0 1

LITTLE 0 1 0 0 0

Table 21: Bigram Statistics Matrix

LITTLE STAR HIGH TWINKLE SKY

TWINKLE 2.2672 0.0358 0 1.0243 0

WORLD 0 0 6.0283 0 0

DIAMOND 0 0 0 0 6.0283

LITTLE 0 2.2092 0 0 0

vector of the WORDi whosejth index shows the score of the bigram WORDi<>WORDj. Since we use

frequency counts of bigrams in this example, the bigram vectors are represented in an integer–valued vector

space whose dimensions are made up of the words represented across the columns.

Table 21 shows the matrix for the bigrams from Table 16 based on log–likelihood scores rather than fre-

quency counts. A bigram matrix that uses such statistical scores is referred to as a bigram statistics matrix.

Each row of a bigram statistics matrix can be viewed as a vector in a real-valued word space.

3.2.3 Co–Occurrences

Co–occurrences are similar to bigram features, except thatthey are not ordered. Two words are called co-

occurrences of each other if they occur within some specifiedwindow of each other without regard to their

order. In our experiments, we set this window size to 5, allowing at most three intervening words between

the two words to call them as co-occurrences. While for bigrams we say that WORDi<>WORDj occurs n

times and WORDj<>WORDi occurs m times, for co–occurrences we simply say that WORDi and WORDj

45

Table 22: Bigrams, Window Size of 3, each Line as Context

WORD1<>WORD2<> n11 n1p np1

SELLS<>SEA<> 1 3 1

SELLS<>SHELLS<> 1 3 2

SEA<>SHELLS<> 1 2 2

SEA<>SHORE<> 1 2 1

SHELLS<>SELLS<> 1 1 1

SELLS<>SALES<> 1 3 1

SALES<>SMELL<> 1 1 1

co-occur (n+m) times. Like bigrams, we do not allow co–occurrences that contain one or two stop words.

Consider the following example, where stop words are indicated in lower case:

she SELLS SEA SHELLS on the SEA SHORE

SHELLS she SELLS on SALES SMELL

Suppose, we first find the possible bigrams in this text using awindow of size 3, and where each line

represents a distinct context (meaning that bigrams may notcross line/context boundaries). The set of

bigrams that results is shown in Table 22.

Now, suppose, we are simply interested in finding which wordsco-occur regardless of their order. Using the

same window of 3 and ignoring pairs that span across the lines/contexts, we find the set of co-occurrence

pairs as shown in Table 23.

Each word pair WORD1<>WORD2 as shown in the co-occurrence list (figure 23) is followed by three

values n11, n1p and np1, which have similar but slightly different interpretations here. n11 shows the

total number of times the two words co-occur together irrespective of the ordering. Notice that,SHELLS

follows SELLSonce on line 1 in the given text, while,SELLSfollows SHELLSonce on line2. Hence, the

co-occurrence file lists the n11 score of the pairSHELLS<>SELLSas 2 unlike the bigram file that shows

two separate orderings asSHELLS<>SELLSandSELLS<>SHELLSeach with score of 1. The n1p count

46

Table 23: Co–occurrences, Window Size of 3, each Line as Context

WORD1<>WORD2<> n11 n1p np1

SELLS<>SEA<> 1 4 3

SELLS<>SHELLS<> 2 4 3

SEA<>SHELLS<> 1 3 3

SEA<>SHORE<> 1 3 1

SELLS<>SALES<> 1 4 2

SALES<>SMELL<> 1 2 1

of a co-occurrence pair WORD1<>WORD2 shows the sum of the n11 counts of all pairs in which WORD1

appears at either position. For example, the n1p count of word SEAis 3 as it appears in total 3 pairs each

with the n11 score of 1. Similarly, the np1 count is the sum of all word pairs in which WORD2 appears.

Measures of Association for Co-occurrence Each co-occurrence pair of the formWORD1<>WORD2<>n11

n1p np1is converted into a 2 x 2 contingency table similar to the one shown in the previous section (Table

17). However, the observed and marginal frequencies have slightly different meanings for co-occurrences,

as explained below.

• n11 = number of times WORD1 and WORD2 co-occur in either order

• n12 = number of word pairs in which WORD1 occurs but WORD2 doesn’t.

• n21 = number of word pairs in which WORD2 occurs but WORD1 doesn’t.

• n22 = number of word pairs in which neither WORD1 nor WORD2 occurs.

• n1p = total number of pairs in which WORD1 occurs. (n11+n12)

• np1 = total number of pairs in which WORD2 occurs. (n11+n21)

• n2p = total number of pairs in which WORD1 doesn’t occur. (n21+n22)

• np2 = total number of pairs in which WORD2 doesn’t occur. (n22+n12)

47

Table 24: Co–Occurrence Log–Likelihood Scores

WORD1<>WORD2<> score

SALES<>SMELL<> 2.9690

SEA<>SHORE<> 1.9225

SELLS<>SEA<> 1.2429

SEA<>SHELLS<> 0.1965

SHELLS<>SELLS<> 0.1965

SELLS<>SALES<> 0.0580

• npp = total number of word pairs in the sample = sum of n11 scores of all co-occurrence pairs.

Here, we only consider the pairs of words that occur within a certain distance or window from each other.

The expected frequencies have the same definitions as they dofor bigrams, and the actual calculation of

log–likelihood is carried out the same way. Table 24 shows the log–likelihood ratios that we result from the

co–occurrences listed in Table 23.

Graphical Model of Co-occurrences Figure 8 shows the graphical representation of the co-occurrences

in what we call a co-occurrence graph. Similar to the bigram graph, each vertex of this graph represents a

word. However, the edges of the co-occurrence graph are undirected as the order of words that co-occur is

not important. An edge connecting vertices X and Y simply indicates that words X and Y co-occur within

the specified distance from each other. In this graph, we use the log–likelihood ratios between the word

pairs as the weights on the edges, rather than their frequency counts.

Notice here that, the n1p or np1 frequency of any word is same as its degree in the undirected co-occurrence

graph, which indicates the total number of pairs in which theword occurs regardless of its position.

In word sense discrimination, we are often interested in co-occurrences of a target word. As can be noticed

in the co-occurrence graph (figure 8), co-occurrences of a particular word are all the words connected to it

in the co–occurrence graph. For example,SHELLS, SALES, SEAare co–occurrences ofSELLS.

48

SELLS

SEA

SHELLS

SHORE

SALES

SMELL

0.197

0.197

1.243
1.923

0.058

2.97

Figure 8: Graphical Representation of Co-occurrences

Table 25: Co-occurrence Matrix

SELLS SEA SHELLS SHORE SALES SMELL

SELLS 0 1.243 0.197 0.058 0 0

SEA 1.243 0 0.197 1.923 0 0

SHELLS 0.197 0.197 0 0 0 0

SHORE 0 1.923 0 0 0 0

SALES 0.058 0 0 0 0 2.97

SMELL 0 0 0 0 2.97 0

Vector Space Model of Co-occurrences We store co-occurrences in a matrix called a co-occurrence

matrix, whose rows and columns represent the words and cell entries indicate the co-occurrence scores of

the corresponding word pairs.

Each word encountered in the text is assigned a unique index and represents the row and column of the

co-occurrence matrix at that index. The matrix entries thenshow the co-occurrence score between the

corresponding pair of words. Table 25 shows the same co-occurrence pairs as in figure 8 in the matrix

format. As the same word represents the row/column at any index and as the value at (i,j) is same as that at

(j,i), the co-occurrence matrix is always square and symmetric.

49

Kth Order Co-Occurrences Co-occurrences as defined thus far can be seen as the words that are directly

connected to each other in a word co–occurrence graph. In other words, the words that are co–occurrences

of each other are joined by a path of length 1, or are at a distance of one edge away from each other. In this

section, we extend that view of co-occurrences and defineKth Order Co-occurrences as words that are K

edges away from each other in the co-occurrence graph.

[39] introduced the idea of second order co-occurrences as words that co-occur with the co-occurrences of a

target word. We observed that these are the words that are indirectly connected to the target word via one of

its co-occurrences. In other words, second order co-occurrences are two edges (with one intermediate node)

away from the target word.

In Figure 8,SHELLSandSHOREare second order co-occurrences of each other since they areconnected via

exactly one word:SEA. Assuming thatSELLSis a target word here,SHOREandSMELLwill then become

the second order co-occurrences of the wordSELLS.

Similarly, we define theKth order co-occurrences of a target word as those words that areconnected to the

target word by exactly K edges (or K-1 intermediate nodes). In general, we call any two words connected

by K edges as theKth order co-occurrences of each other. For example, in the co-occurrence graph shown

in Figure 8, wordsSHOREandSALESare called the third order co-occurrences, as the shortest path con-

necting them has length 3 (with two intermediate nodes). Similarly, SHOREandSMELLare forth order

co-occurrences as they are four edges away from each other.

Given this framework, co-occurrences as defined in the beginning of this section can be seen as the first-order

co-occurrences as those are connected by exactly one edge.

3.3 Context Representations

After selecting features from the training data, we turn ourattention to the test data that contains the instances

of the target word to be clustered. Each instance in the test data is converted into a form that indicates which

of the features occur (or not). In particular, the context around each instance of the target word in the test

data is represented as a vector of features called a context vector. We refer to the operation of identifying

which features occur in the test instance asfeature matching, since we take a list of features found in training

data, and check if they occur in the test instances by performing an exact string match.

50

In this section, we discuss two types of context representations: first order context vectors as used by [30]

and second order context vectors as introduced by [39].

3.3.1 First-Order Context Vectors

A first order context vector indicates which of the features directly occur in the context of the test instance.

If the feature values are binary, a context vector simply indicates which features occur in the context. If

the features are non-binary, a context vector indicates thenumber of times each feature is matched in the

context.

The text below was created by randomly selecting web search results for the query ”sells NEAR shells”

using the Alta-Vista search engine [15]. The NEAR directiverequests any pages that contain ‘sells and

shellswithin 10 positions of each other be returned. As such this data contains occurrences of these words

in both possible orders, which allows us to effectively illustrate the nature of co–occurrences.

SHERRY SELLS CANDLES OF SEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARE SEA SHELLS, I AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDDECORA-

TIONS

SHE SELLS SEA SHELLS EARRINGS AT SHERRY’S SHELL STORE

Unigram Matching We perform exact feature matching rather than fuzzy matching, and hence it is re-

quired that a feature word be matched literally in the context of a test instance. Also note that we do not

attempt to stem (reducing words to their base forms) or normalize either the training or test data, so a feature

word does not even match with its own morphological variantsin the context.

In the Alta-Vista sample of text, the unigramSHELLwill be matched total 2 times on lines 6 and 7, as shown

by bold entries below.

51

SHERRY SELLS CANDLES OF SEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARE SEA SHELLS, I AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEASHELL CANDLES, CHRISTMAS ORNAMENTS AND DECORA-

TIONS

SHE SELLS SEA SHELLS EARRINGS AT SHERRY’SSHELL STORE

However, the unigramSHELLSis matched a total of 8 times as shown below.

SHERRY SELLS CANDLES OF SEASHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OFSHELLS

SHELLS SHE SELLS ARE SEASHELLS, I AM SURE

IF SHE SELLSSHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THESHELLS OUGHT TO BE THE SEA SHORESHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDDECORA-

TIONS

SHE SELLS SEASHELLS EARRINGS AT SHERRY’S STORE

Thus, the unigramSHELLdoes not match the context that has its plural formSHELLSand vice-a-versa.

Similarly, the verb featureSELLwill not match its different forms likeSELLSor SOLD.

Our hypothesis is that dimensionality reduction techniques like SVD when performed on a large sample of

text will tend to smooth irregularities and variations in language usage, including the different morphological

forms of words.

Bigram Matching A bigram of the formWORD1<>WORD2selected using a window of size n (say n=5)

is said to be matched in the text only if WORD1 is followed by atmost n-2 words (here 3 words if n=5) in

the same context before WORD2 appears.

52

Suppose we do not use any window (count only consecutive wordpairs) while selecting a bigram feature

SEA<>SHELLS. Then, the above sample text will have 3 matches of bigramSEA<>SHELLSwhereSEA

is immediately followed bySHELLSas shown below.

SHERRY SELLS CANDLES OFSEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARESEA SHELLS, I AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDDECORA-

TIONS

SHE SELLSSEA SHELLS EARRINGS AT SHERRY’S SHELL STORE

Note that our exact matching does not match the sequenceSEA SHORE SHELLSon line 5, as we require

the wordsSEAandSHELLSto occur consecutively when windowing is not used. We also donot consider

the sequenceSEA SHELLon line 6 as it is not an exact match of the featureSEA SHELLS. The sequence

SHELLS ON THE SEAon line 4 is discarded for same reason;SEAandSHELLSin this sequence do not

occur in the same order as expected by the featureSEA SHELLSnor do they appear consecutively.

Suppose that we allow a window of 5 i.e. at most 3 intervening words, then the bigramSELLS<>SHELLS

will match the sample text 5 times as shown below.

SHERRYSELLS CANDLES OF SEASHELLS BY THE SEA SHORE

SHE ALSOSELLS BRIDAL JEWELRY OFSHELLS

SHELLS SHESELLS ARE SEASHELLS, I AM SURE

IF SHESELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDDECORA-

TIONS

SHESELLS SEASHELLS EARRINGS AT SHERRY’S SHELL STORE

53

Co-occurrence Matching A co-occurrence feature selected using a window size of n (here n=5) is said

to be matched in a context if there are at most n-2 (here 3) words between that feature word and the target

word in the context. While matching, it doesn’t matter whether a feature word follows or precedes the target

word. Thus, a co-occurrence feature that appears within a given window from the target word in the training

data is said to be matched in the context of a test instance if it appears within the same distance from the

target word in that context.

For example, in the context of the wordSHELLS, word SEAappears a total of 6 times within a window of

size 5, as shown by the bold face entries below.

SHERRY SELLS CANDLES OFSEA SHELLS BY THESEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARESEA SHELLS, I AM SURE

IF SHE SELLS SHELLS ON THESEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THESEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDDECORA-

TIONS

SHE SELLSSEA SHELLS EARRINGS AT SHERRY’S SHELL STORE

Note that on line 3 there are two instances ofSHELLS, andSEAis within 5 positions of both these instances.

However, we require that there is only single instance of thetarget word in each context. Even if there are

multiple occurrences of the same word in a context, we treat only one of them as the target word. This is

because we do not make any assumption that multiple instances of a word in the same context always refer

to the same meaning. Its possible to find the same word used with different meanings in the same context.

For example,SHELLS SHE SELLS ARE SEA SHELLS AND NOT FIREWORK SHELLS.In order to identify

a correct instance of the target word, we mark it with an XML tag like < head > SHELLS < /head >.

On the similar lines, on line 5,SEAwill match only if the second instance ofSHELLSis marked as the

head/target word, as there are four words betweenSEAand the first instance ofSHELLSwhich goes beyond

our window size of 5 that allows for only 3 intervening words.

54

Table 26: Unigram Features, First Order Example

WORD<>

SEA<>

GUNS<>

SHORE<>

SYSTEM<>

CORALS<>

EXECUTE<>

EXPLODE<>

COMMANDS<>

FILE<>

STORE<>

FIREWORK<>

UNIX<>

Building Actual First Order Contexts Suppose we selected the unigram features shown in Table 26 from

some hypothetical training data.

Further suppose that our test data consists of following text, where the beginning and end of each context is

marked with XML< context > tags, and the target word is marked with the< head > tag. For simplifying

further explanation, each context appearing on linei is given an identifierCi as shown in the beginning of

each line :

C1: < context > a < head > SHELL < /head > SCRIPT is a FILE of UNIX COM-

MANDS< /context >

C2: < context > if she SELLS SHELLS BY the SHORE, then i am SURE she SELLS SEA

SHORE SHELLS and not the FIREWORK< head > SHELLS < /head >< /context >

C3: < context > STORE the CSH COMMANDS in a< head > SHELL < /head > and

INVOKE CSH to EXECUTE these COMMANDS< /context >

C4: < context > FIREWORK< head > SHELLS < /head > EXPLODE onto the USU-

55

Table 27: First Order Context Vectors

SEA GUNS SHORE SYSTEM CORALS EXECUTE EXPLODE COMMANDS FILE STORE FIREWORK UNIX

C1 0 0 0 0 0 0 0 1 1 0 0 1

C2 1 0 2 0 0 0 0 0 0 0 1 0

C3 0 0 0 0 0 1 0 2 0 1 0 0

C4 0 0 0 0 0 0 1 0 0 0 1 0

C5 0 1 0 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 1 0 0 0 0 0 0 0

C7 1 0 1 0 0 0 0 0 0 1 0 0

ALLY DARK SCREENS in a VARIETY of COLORED STREAKS< /context >

C5: < context > ARTILLERY GUNS were USED to FIRE HIGHLY EXPLOSIVE< head >

SHELLS < /head >< /context >

C6: < context > we OFFER the BEST COLLECTION of< head > SHELLS < /head >

and CORALS at VERY REASONABLE PRICES< /context >

C7: < context > the LARGEST SEA< head > SHELL < /head > STORE on the SHORE

< /context >

For each of the above contexts, we construct a first order context vector that indicates which features occur

in that context. Table 27 shows the first order context vectors for each of the above contexts. Specifically,

each line of Table 27 shows a vector representing the contextthat appears on the corresponding line in the

above text, where the selected features become the dimensions of these vectors. A cell value at (i,j) indicates

the number of times a feature represented by thejth column is found matched in the context represented by

theith row.

56

Table 28: Unigram Features, Second Order Example

WORD<>

SEA<>

GUNS<>

SYSTEM<>

COMMANDS<>

STORE<>

UNIX<>

3.3.2 Second-Order Context Vectors

Second order context vectors indirectly represent the context of a test instance by an average of the word

vectors of features that match in the context. First, a bigram or co–occurrence matrix is constructed to

show the frequency counts or statistical scores of association between all pairs of words that form bigrams

or co-occurrences in the training data. Thus, each word in the training data is represented by a bigram or

co-occurrence vector that shows how often (or how strongly)it is associated with each of the other words

in the training corpus. These vectors are referred to asfeature vectorsor justword vectors. The context of

each test instance is then represented by the average of all feature vectors of words that make up that context

(where low frequency and stop words are excluded).

Suppose Table 28 shows the features we selected from the training data.

And suppose Table 29 shows feature vectors for each of the words included in this feature set. Specifically,

each row shows a co-occurrence vector for the correspondingfeature word shown in column 1. The values

in the matrix are the log–likelihood ratio between the corresponding pairs of words. For this example, these

values are obtained from the Associated Press Worldstream corpus. The words representing the dimensions

(columns) in this table are a randomly selected subset of theunigram features found in this corpus. We do

not show all the dimensions for this corpus as it consists of more than 100,000 columns!

Having created the feature vectors for each of the selected feature word in the training data, we turn our

attention to building a second order context vector for eachinstance in the test data.

57

Table 29: Example Feature Word Vectors

SELLS WATER MACHINE COMPUTERS DOS BOMBS

SEA 18.5533 3324.9846 0 0 0 8.7399

GUNS 22.4537 287.4839 85880.9155 48.1596 0 699.5669

SYSTEM 0 6858.3415 1.7013 14.5221 116.1319 0

COMMANDS 0 0 0 31.1924 90.2884 0

STORE 134.5102 205.5469 0 62.3774 0 0

UNIX 0 0 116.6942 109.1895 0 0

Table 30: Feature Vectors of UNIX, COMMANDS and SYSTEM

SELLS WATER MACHINE COMPUTERS DOS BOMBS

SYSTEM 0 6858.3415 1.7013 14.5221 116.1319 0

COMMANDS 0 0 0 31.1924 90.2884 0

UNIX 0 0 116.6942 109.1895 0 0

Suppose we want to create a second order context vector for the instance below:

< context > the C< head > SHELL < head > OFFERS a UNIX USER many DIF-

FERENT COMMANDS. on any UNIX SYSTEM, ONLINE DOCUMENTATION of these COM-

MANDS is AVAILABLE in MAN PAGES.< context >

As before, stop words are written in lower case letters, the target word is marked in< head > tags, and the

< context > tags indicate the beginning and end of the context.

Note that in this context, we observe features UNIX and COMMANDS twice and feature SYSTEM once.

Other features like SEA, GUNS, STORE do not appear. We obtainthe feature vectors for the words UNIX,

COMMANDS and SYSTEM from the co-occurrence matrix in table 29.

Then we can compute the second order context vector as follows, where
→

WORD stands for the vector

associated with a given word, and the numerator represents the sum of all the vectors associated with the

58

words in the context:

(2∗
→

UNIX) + (2∗
→

COMMANDS) + (
→

SY STEM)

5

=
2 ∗ (0 6858.3415 1.7013 14.5221 116.13190) + 2 ∗ (0 0 0 31.1924 90.2884 0) + (0 0 116.6942 109.1895 0 0)

5

=
(0 13716.7 3.4026 29.0442 232.264 0) + (0 0 0 62.3848 180.577 0) + (0 0 116.6942 109.1895 0 0)

5

=
(0 13716.7 120.097 200.618 412.841 0)

5

= (0 2743.34 24.0194 40.1236 82.5682 0)

Note that a second order context vector indirectly represents contexts in terms of the words that co-occur

with the contextual words rather than with the target word. The intuition behind this indirection is that a

co-occurrence or bigram vector of a word is assumed to capture the meaning of that word in terms of the

words that most frequently co-occur with it, and by averaging the word vectors of contextual words, we try

to capture the meaning of the entire context in terms of the meanings of its contextual words. In short, we try

to represent the meaning of a context as an average meaning ofthe words that appear in the context. As our

method is knowledge–lean, we try to find the meanings of feature words found in any context by identifying

the words that most commonly co-occur with them in the training data.

3.4 Singular Value Decomposition

Matrices as shown in Tables 20, 25 or 27 can be reduced in dimensions by performing Singular Value

Decomposition (SVD). Specifically, we use the single vectorLanczos method (las2) as implemented in

SVDPACKC [2]. We selected this particular algorithm based on the results reported by [2] that show its

overall performance efficiency over other methods.

The program las2 expects the input matrix to be in the Harwell-Boeing format (see [2]) along with the values

of various program options specified separately in a parameter file lap2. Various constants for the program

are specified at compilation time via the header file las2.h. In the discussion that follows we describe the

various parameters in files lap2 and las2.h, and how we set their values in our experiments.

59

3.4.1 Setting parameters in lap2

The parameter file lap2 allows the user to specify the values of various parameters while running las2. The

format of the lap2 file is as follows:

name lanmax maxprs endl endr vectors kappa

where all parameter values are listed on a single line and areseparated by blank space.

The parameters of most relevance to us are the 2nd and the 3rd,i.e., lanmax and maxprs. Other than

these two (lanmax and maxprs), all others are set to their default values as given in the original lap2 file

distributed with SVDPACKC.< name > specifies the name of the matrix and we set it to a descriptive

string that indicates the data source and specific settings used to create the matrix.

< maxprs > specifies the number of singular triplets to be discovered bylas2. In our experiments, we set

maxprs tomin(K, COLS/RF)where K = 300 and RF = 10. K and RF are both referred to as the reduction

factors. The value of K specifies the number of significant dimensions to be retained by SVD while RF

specifies the scaling factor by which the original dimensions are reduced. For example, if the matrix prior

to SVD has 1200 columns, then we reduce it down to min(300, 1200/10) = min(300,120) = 120 dimensions.

On the other hand, if the matrix has 12,000 columns, we retainonly the top 300 ones (as min(300, 12000/10)

= min(300,1200) = 300).

Apart from< maxprs >, we also set the< lanmax > parameter that specifies the number of iterations

for las2. As suggested by the SVDPACKC authors, we set this to(3 * maxprs) which is said to be enough

to compute< maxprs > singular values. The value of< lanmax > has to be at least as high as the

< maxprs > parameter and the values of< lanmax > and< maxprs > can not exceed the total number

of columns in the original matrix. Hence, we set< lanmax > to min(3*maxprs, #cols) to make sure that it

is always less than or equal to the number of columns (#cols) of the given matrix.

3.4.2 Setting constants in las2.h

The header file las2.h sets the values of various program constants to las2.

60

• NMAX - Specifies the maximum possible number of columns in thematrix given to las2. By default,

las2.h will have NMAX = 3000 that allows maximum 3000 columnsin the matrix. As this default is

too small for most of our experiments, we set NMAX to 10,000 that allows up to 10,000 features. In

case of our experiments with large (global) training data, we even set this constant to something as

high as 200,000. In short, this value is expected to be higherthan the number of columns in the matrix

prior to SVD.

• NZMAX - Specifies the maximum possible number of non-zero values in the matrix. Default settings

in las2.h have NZMAX = 100000. Assuming that our local 10,000x 10,000 matrix is approximately

1% dense, we set NZMAX to 1,000,000 (10,000 x 10,000 / 100). Our experiments with large data

used NZMAX of about 5,000,000.

• LMTNW - This specifies the maximum total memory to be allocated by las2. Default value of

LMTNW in las2.h is 600000. Specifically, LMTNW is expected tobe at least as high as (6*NMAX +

4*NMAX + 1 + NMAX*NMAX). Again by Assuming that our 10,000 x 10,000 matrix is 1% dense,

we set LMTNW to 10,010,000. The global experiments with a very large training used LMTNW =

2,000,100,000.

3.5 Determining Number of Clusters to Create

A significant challenge in any clustering task is to determine how many clusters should be created for the

given data. While discriminating senses of a word, we face a similar question: how many senses does a

word actually have? As we use a knowledge–lean approach here, we can not simply refer to an electronic

dictionary to find out this answer. The following discussiondescribes the various strategies we used to

overcome this challenge in our experiments.

3.5.1 Similarity Score Cutoff

The parameter, number of clusters to be created, specifies a terminating condition to a clustering algorithm

that will continue to cluster until the required number of clusters are formed. Recall that an agglomerative

algorithm starts with N initial clusters (for N test instances) and merges the most similar pair of clusters

61

at each iteration. A divisive algorithm starts with a singlecluster and splits a cluster with most dissimilar

elements in each iteration.

Thus, if no stopping conditions are specified, an agglomerative algorithm will continue merging until a

single cluster is formed, while a divisive algorithm will continue splitting until the given N instances are

divided into N clusters. In our first experiments (describedas Experiment 1 in the Experimental Results

section), we used a strategy that sets the number of clustersto be discovered to 1 for agglomerative and to N

(where N = number of test instances) for a divisive method. Then we used another stopping rule to terminate

clustering before these conditions are met.

Specifically, we set threshold values on similarity scores such that an agglomerative algorithm stops if no

pair of clusters has similarity above the specified cutoff and a divisive algorithm stops if no two members of

any cluster have similarity below the specified cutoff. Agglomerative methods stop due to a lack of enough

similarity between any pair of clusters for merging, while adivisive method stops due to lack of enough

dissimilarity within any cluster for splitting. However, we realized that determining the appropriate score

at which to stop clustering is a challenging problem in its own right and there is no single score value that

finds suitable number of clusters for any dataset.

3.5.2 Filtering Low Frequency Senses

After realizing the difficulty in setting a suitable score cutoff for clustering, we decided to pre–process the

data such that it includes instances of only the top N most frequent senses of any word. Thus, irrespective of

the number of senses a word has in a dictionary, we selected only the N most frequent senses. This allowed

us to create exactly the same number of clusters as the word senses. We refer to this method of filtering data

based on the rank of the word senses as arank based sense-filter. In brief, we count the number of instances

for each word sense in the evaluation data (i.e., test data where the true classification of an instance is

known), then rank the word senses in the descending order of these frequencies and finally select the top N

most frequent senses by removing the instances that use the senses ranking below N.

The limitation of the rank based sense-filter is that a selected value of N could be too high for some of

the words that have fewer popular senses. This poses anotherchallenge of discriminating very rare senses

of such words. Here, we assume that the given test data is a representative sample of the general language

62

usage and the percentage frequency of any word sense remainsmore or less same in any other representative

sample. Thus, popular senses are supposed to be the ones thatare used by a large number of instances while

the rare senses are those used by very few instances in the given evaluation sample. Clustering the instances

of rare word senses is assumed to be more challenging becausethere will be fewer instances of such rare

senses in any both training and test data. This results into fewer features characterizing such senses, which

in turn leads to very sparse context representations of the instances that use these rare senses.

Since the rank based sense-filter poses the challenge of including some very rare word senses, in our later

experiments we selected the most frequent senses based on some percentage frequency cutoffs instead of

rankings. In other words, we selected only those senses thatare illustrated by at least M% of the total

instances in the evaluation data. M is typically set to some number greater than 5 or 10.

For example, assuming that the evaluation data has at least 100 total instances, by setting M to 10, we make

sure that there are at least 10 instances of each sense. This type of preprocessing based on the percentage

frequencies of word senses is referred to as thepercent based sense-filter. Thus, from a given test data with

total N instances, we remove the instances which are tagged with the senses that in turn are used by less

than NM/100 instances. Hence, we know that every word sense in the filtered test data has at least NM/100

instances. We then create some arbitrarily large number of clusters that is greater than expected number of

senses for any word.

For example, assuming that most words have approximately 3-6 senses, we create 10 clusters. Our hypoth-

esis here is that, a good discrimination experiment will automatically create approximately same number of

clusters as the true senses and the extra clusters will contain very few instances. In the ideal case, we expect

that each extra cluster will have a single instance. Thus, wecan ignore the singleton clusters (containing

only one instance) without loosing many instances. The other variation that we tried was to ignore the clus-

ters that contain less than NM/100 instances. This is because we know that our M-percent filter has only

retained the senses with at least NM/100 instances.

As such we expect each of the discovered clusters to have at least NM/100 instances. In practice, however,

the distribution of instances in the discovered clusters isnever exactly same as that of the true senses in the

data. Hence, after applying a M% filter, we usually ignore theclusters containing less than some P instances,

where P is slightly less than NM/100.

63

Figure 9: Graphical Visualization of Clusters

3.5.3 Cluster Visualizations

Both the approaches described above require knowledge of the true sense tags of the test instances prior to

clustering and hence can’t be applied to the problem of clustering when this knowledge is not available. In

other words, the kind of preprocessing proposed above basedon the frequency of word senses is only useful

for experimental purposes when we know the true distribution of senses in the given data. Hence, we believe

that the strategy we employ for determining the correct number of clusters should not use any knowledge

beyond what is available in raw text.

There are tools available such as GCLUTO that produce a graphical visualization of discovered clusters

that helps to determine which clusters are significant. Morespecifically, the 3D mountain view of clusters

as created by GCLUTO shows each cluster by a mountain in a 3D plane. The distance between any two

mountains is a inverse function of their inter-cluster similarity while the height of a mountain is directly

proportional to the intra-cluster similarity. Thus, one can easily notice that the short clusters are the extra

ones and in fact can be viewed as the parts of one of the major (taller) clusters that is closest to them.

Figure 9 illustrates the case when the gold-standard evaluation data has fewer senses than the actual number

of clusters discovered. In this case, we requested 10 clusters but the mountain view reveals that there are

only 5 to 7 significant clusters and hence the data should be better divided into around 6 clusters.

The problem with this method is that it requires manual inspections of cluster results and is not fully auto-

matic. Hence, the problem of automatically discovering thecorrect number of clusters without using any

knowledge outside the given raw corpus remains a challenge that we plan to address in our future work.

64

Table 31: Cluster by Sense Confusion Matrix

SERVE10 SERVE12 SERVE2 SERVE6

C0: 401 23 42 9

C1: 16 5 9 4

C2: 3 1 8 4

C3: 21 8 23 9

C4: 147 66 75 15

C5: 8 0 2 1

C6: 0 2 1 2

C7: 0 3 8 3

C8: 9 16 12 7

C9: 67 393 161 124

3.6 Evaluation

The performance of a clustering algorithm can be evaluated using gold–standard data in which instances

being clustered are manually attached with their true sensetags. Some of the instances can have multiple

sense tags attached by same or different human taggers, which means that they use more than one sense of

the target word. However, we always used hard clustering in our experiments and hence do not classify any

instance into more than one clusters. Since this poses a challenge in evaluating such instances with multiple

answers, we remove all but the most frequently used sense attached to those instances that have multiple

possible correct answers. In other words, every instance inour evaluation data is tagged with only one sense

which is the most frequent of all the senses attached to it.

The output of a clustering algorithm shows clusters of giveninstances such that all the instances that use the

same meaning of the target word are grouped together in the same cluster. If we know the true sense tags of

the instances belonging to various clusters, we can construct a cluster by sense distribution matrix as shown

in Table 31 that shows the number of instances of each sense ingold–standard in each of the discovered

clusters.

65

The Table 31 suggests that we discovered total 10 clusters (represented by the rows) but there were only 4

senses (shown by the columns) in the gold–standard. Each cell value at (i,j) indicates the number of instances

with true senseSj as represented by thejth column that are members of the clusterCi as represented by the

ith row. In general, we will build a M x N confusion matrix if we create M clusters and there are total N

senses in the gold–standard.

We then try to determine which sense of the target word is mostclosely represented by each cluster. A

cluster containing maximum number of instances using a specific sense is assumed to represent that sense.

Thus, the problem of determining what sense each cluster represents turns out to be a typical assignment

problem of mapping sense tags to clusters. We assume one sense per cluster and hence do not make any

attempt to attach multiple senses to a single cluster or a single sense to multiple clusters.

3.6.1 Eight Rooks (not Queens) Evaluation Algorithm

This problem of mapping senses to clusters is similar to the famous 8 Queens problem in chess. This

attempts to place 8 queens on a standard 8 x 8 chess board such that no two queens kill each other. As

queens can travel in any direction (horizontal, vertical ordiagonal), the problem in fact tries to place queens

such that no two queens are in the same row, column or diagonalin the 8 x 8 matrix.

We observed that if we attach multiple senses to a single cluster, we in fact select two cells in the same row

in the confusion matrix. And similarly, we will select two cells from the same column if we attach a single

sense to multiple clusters. Hence, what we would like to achieve here is to select cells from the confusion

matrix as shown in Table 31 such that not two cells fall in either same row or column. Thus, we view our

M x N confusion matrix as a M x N rectangular chess board on which we attempt to place min(M,N) rooks

such that no two rooks kill each other. In chess, rooks travelonly horizontally and vertically and therefore

the condition that no rook should kill another rook automatically achieves our goal of not selecting any two

cells from the same row or column.

Each possible solution to this problem in fact gives one possible assignment of senses to clusters. For

example, selecting a confusion cell at (p, q) is equivalent to labeling clusterCp with the senseSq. The value

of this cell at (p, q) is essentially the number of instances in clusterCp that will be in their correct sense

classSq if clusterCp is assumed to represent senseSq. Thus, if we add the values at all the selected cells

66

Table 32: Confusion Matrix when (M = N)

SERVE10 SERVE12 SERVE2 SERVE6

C0: 556 89 119 25

C1: 16 5 9 4

C2: 3 1 8 4

C3: 97 422 205 145

for a particular mapping, we get the total number of instances correctly classified if clusters are assumed to

represent the senses as suggested by that mapping. For finding the accuracy of the solution, we select the

maximal accurate mapping that gives the maximum number of total instances in their correct sense classes.

In most of our experiments, we do not assume the knowledge of actual number of senses for a word. Hence,

the number of clusters we end up creating for a word could be more, less or equal to the actual number of

senses that word has as per the gold–standard. The followingis a discussion of how we handle these three

cases while assigning senses to clusters for evaluation.

3.6.2 #CLUSTERS (M) = #SENSES (N)

Suppose we create exactly same number of clusters as the senses in the gold–standard as illustrated in Table

32. Thus, the N x N confusion matrix in this case will result into total N! (factorial) possible mappings that

label every cluster with a single sense.

The following shows the most accurate mapping for the confusion matrix in Table 32:

C0=>SERVE10

C1=>SERVE2

C2=>SERVE6

C3=>SERVE12

This mapping suggests that we view Cluster C0 as sense SERVE10, cluster C1 as sense SERVE2 and so on.

67

Table 33: Confusion with (M = N) after Column Re-ordering

SERVE10 SERVE2 SERVE6 SERVE12

C0: 556 119 25 89

C1: 16 9 4 5

C2: 3 8 4 1

C3: 97 205 145 422

Here, SERVE10, SERVE2, etc. are sense tags/identifiers usedto denote each sense in the gold–standard.

How these sense tags map to actual dictionary meanings depends on the particular source of gold–standard

data which we do not discuss here.

We then re-arrange the columns of the confusion matrix such that the cells selected by the most accurate

mapping fall across the diagonal as shown in Table 33. The diagonal entries of the confusion matrix after col-

umn reordering indicate the number of instances in each cluster that are in their correct sense class. Thus, the

sum of all diagonal values gives the overall accuracy for this solution. In this case, it is (556+9+4+422)=991

which means a total of 991 instances are correctly classifiedaccording to the best mapping.

Table 34 shows the final report that we create for our evaluation and inspections of the results. The additional

column of TOTAL shows the total number of instances in each cluster and the values in the brackets are the

percentage of the total instances belonging to that cluster. This is referred to as the column of row marginal

values as the value in each row of this column is in fact the sumof all other values on the same row.

Similarly, the additional row of TOTAL indicates the columnmarginals which is the total number of in-

stances using the sense shown by the particular column alongwith their corresponding percentage distribu-

tions shown in the brackets.

The total number of instances actually clustered is simply the sum of all entries in the matrix which is 1708

in this case. Hence, the precision is 991/1708 = 58.08 for this particular experiment. The total number of

instances that we actually gave to the clustering algorithmhere was (1708+44)= 1752 as indicated by the

denominator in recall. This means that our clustering algorithm wasn’t able to cluster 44 instances. Hence,

the recall turns out to be (991/1752)=56.56 which is slightly less than the precision.

68

Table 34: Final Report for Confusion case (M=N)

SERVE10 SERVE2 SERVE6 SERVE12TOTAL

C0: 556 119 25 89 789 (46.19)

C1: 16 9 4 5 34 (1.99)

C2: 3 8 4 1 16 (0.94)

C3: 97 205 145 422 869 (50.88)

TOTAL 672 341 178 517 1708

(39.34) (19.96) (10.42) (30.27)

Precision = 58.02(991/1708)

Recall = 56.56(991/1708+44)

3.6.3 #CLUSTERS (M)> #SENSES (N)

When we create more clusters than the actual number of sensesin the gold–standard (M> N), our mapping

solutions that assume one sense per cluster, leave the (M-N)clusters unlabeled. In other words, N senses

can be mapped only to N (out of M) clusters. We expect that a good methodology should automatically

create the right number of clusters leaving very few (ideally only 1) instances in the extra (M-N) clusters.

Each possible mapping selects a subset made up of N clusters from the total M clusters and then solves the

mapping problem similar to the previous case when M = N.

Table 35 illustrates the case when we create more (10) clusters than the actual number of senses (4) in

the gold–standard. Table 36 shows the same confusion table after re-ordering its columns to reflect the

maximum accurate mapping across the diagonal.

This shows that only clusters C0, C3, C4 and C9 are assigned labels according to the best mapping scheme.

The rest of the clusters are assumed to be the extras which areexpected to contain a smaller percentage

of the total instances. Hence, the total number of instancesthat are correctly classified is again the sum of

the diagonal values of the column–reordered confusion matrix which is (401+9+75+393)=878. Note that,

this value does not take into account the instances in the remaining (so called extra) clusters. In an ideal

69

Table 35: Confusion Matrix when (M> N)

SERVE10 SERVE12 SERVE2 SERVE6

C0: 401 23 42 9

C1: 16 5 9 4

C2: 3 1 8 4

C3: 21 8 23 9

C4: 147 66 75 15

C5: 8 0 2 1

C6: 0 2 1 2

C7: 0 3 8 3

C8: 9 16 12 7

C9: 67 393 161 124

Table 36: Confusion with (M> N) after Column Re-ordering

SERVE10 SERVE6 SERVE2 SERVE12

C0: 401 9 42 23

C3: 21 9 23 8

C4: 147 15 75 66

C9: 67 124 161 393

70

Table 37: Final Report for Confusion case (M> N)

SERVE10 SERVE6 SERVE2 SERVE12TOTAL

C0: 401 9 42 23 475 (27.81)

C3: 21 9 23 8 61 (3.57)

C4: 147 15 75 66 303 (17.74)

C9: 67 124 161 393 745 (43.62)

C1:* 16 4 9 5 34 (1.99)

C2:* 3 4 8 1 16 (0.94)

C5:* 8 1 2 0 11 (0.64)

C6:* 0 2 1 2 5 (0.29)

C7:* 0 3 8 3 14 (0.82)

C8:* 9 7 12 16 44 (2.58)

TOTAL 672 178 341 517 1708

(39.34) (10.42) (19.96) (30.27)

Precision = 55.43(878/1584)

Recall = 50.11(878/1708+44)

solution, all extra clusters are expected to be singleton and hence we will loose only (M-N) instances from

our accuracy score.

A report displaying the column–reordered confusion along with the marginal totals of all clusters is shown in

table 37. Note that, the rows marked with * show the extra clusters that aren’t labeled by the best mapping.

The instances belonging to these extra clusters are treatedas un–clustered and hence not considered in

precision. Note that the extra clusters occupy a small percentage of the overall instances and hence ignoring

them will not have much impact on the overall accuracy.

71

Table 38: Confusion Matrix when (M< N)

SERVE10 SERVE12 SERVE2 SERVE6

C0: 556 89 119 25

C1: 116 428 222 153

Table 39: Confusion with (M< N) after Column Re-ordering

SERVE10 SERVE12

C0: 556 89

C1: 116 428

3.6.4 #CLUSTERS (M)< #SENSES (N)

The confusion matrix in Table 38 demonstrates the third possibility when we create fewer clusters than

actual number of senses in the gold–standard, i.e., M< N. In this case, our labeling strategy that assumes

one sense per cluster, will attach only M (out of N) senses to Mclusters, leaving the extra (N-M) senses

free. In other words, we do not make any attempt to tag more than one sense to any cluster.

Table 39 shows the same confusion matrix from Table 38 after re-ordering its columns, to show the best

mapping across the diagonal.

This shows that the best mapping used only two senses SERVE10and SERVE12. The score of the best map-

ping is (556+428)=984. Though, we do not take into account the instances of extra senses (here, SERVE2

and SERVE6) in accuracy score, we do count them in both precision and recall. In other words, unlike we

do in case when M> N, we do not discard the instances of extra senses as un–clustered.

Table 40 shows the final report created for the same solution.The columns marked with # indicate the extra

senses that weren’t attached to any cluster while determining the accuracy.

72

Table 40: Final Report for Confusion case (M< N)

SERVE10 SERVE12 SERVE2# SERVE6#TOTAL

C0: 556 89 119 25 789 (46.19)

C1: 116 428 222 153 919 (53.81)

TOTAL 672 517 341 178 1708

(39.34) (30.27) (19.96) (10.42)

Precision = 57.61(984/1708)

Recall = 56.16(984/1708+44)

73

4 Experiments

We have thus far introduced various types of features, context representations, similarity measures and

clustering algorithms. Now we can address one of the centralquestions of this thesis:

Does any particular type of feature, context representation, similarity measure, or clustering

algorithm give optimal results under all or certain circumstances?

By circumstances, we mean anything in the formulation of thedata or algorithm that could have an effect

on the overall accuracy of word sense discrimination. For example, this could include (but is not limited to)

the following:

• The different types and amounts of data to be discriminated,

• the nature of the training training (local versus global),

• coarse versus fine granularity in word meanings, and

• balanced versus skewed distribution of word senses in the training/test data.

To that end, we present the results of four separate experiments, each of which is designed to compare and

contrast the various choices that can be made when formulating a word sense discrimination solution.

4.1 Experiment 1: Lexical Features and Similarity Measures

The objective this experiment is to determine to what extentdifferent types of first order features and simi-

larity measures impact the accuracy of sense discrimination when performed in similarity space.1

These experiments use the first order representations of contexts with unigram, bigram and second order

co-occurrences as features. In addition to using each of these types of features separately, we also created a

novel feature type we call themixby taking the union of the feature sets of these three features.

1These experiments were performed in December 2002, and wereoriginally published in the Student Research Workshop at

HLT-NAACL 2003 [34].

74

Clustering was then carried out in similarity space by computing pairwise similarities among the first order

context vectors, using the matching and cosine similarity coefficients. We used the UPGMA clustering

method, which is equivalent to average link clustering and McQuitty’s Similarity Analysis. The experiments

are carried out with local training data where each trainingexample used for selecting features includes an

instance of the target word.

4.1.1 Data

In Experiment 1, we used two well known sources of sense–tagged text, the LINE data [21] and the En-

glish lexical sample data from the SENSEVAL-2 comparative exercise among word sense disambiguation

systems [11].

The LINE data contains 4,146 instances, where each consistsof two to three sentences around a single

occurrence of the wordline. Each instance has been manually tagged with one of six possible senses. We

randomly selected 100 instances of each sense for test data,and a separate set consisting of 200 instances

of each sense for training. This gives a total of 600 evaluation instances, and 1200 training instances. This

is done to test the quality of our discrimination method whensenses are uniformly distributed and where no

particular sense is dominant.

The standard distribution of the SENSEVAL-2 data consists of 8,611 training instances and 4,328 test

instances. There are 73 distinct target words found in this data: 29 nouns, 29 verbs, and 15 adjectives. Most

of these words have less than 100 test instances, and approximately twice that number of training examples.

Instances in the training data indicate the correct sense ofthe word intended in that context, while, the

correct senses for the test instances are provided in a separate answer key file. Each word has from 8 to 12

possible senses according to both the keyfile and the training data. Also, there are many training and test

instances in this data that show multiple correct sense tags.

It’s important to note that we do not use the sense tags available in the training and test data as a part of

the clustering process, nor do we use them for feature selection. However, we do use them to filter out low

frequency senses of words that appear in the training and test set. We believe this is a reasonable step to take,

since the amount of training and test data is very small, and yet the number of senses per word is relatively

large. This leads to some senses that occur a very small number of times, and we eliminate the smallest of

75

these prior to any processing going forward.

Specifically, we only retain those training and test instances whose actual sense is among the top five most

frequent senses as observed in the training data for that word. We believe that even 5 is an aggressive number

of senses for a discrimination system to attempt, considering that Pedersen and Bruce [30] experimented

with 2 and 3 senses, and Schütze [39] made binary distinctions.

Also, in cases where a test instance has more than one possible correct answer, we only kept the most

frequent of those. The other possible answers were discarded, since our evaluation technique assumes one

possible correct sense per cluster. We also noticed that theSENSEVAL-2 data identifies target words that

are being used as proper nouns. We decided to not this fact in our discrimination by removing these so–

called P tags from the data. After carrying out all these preprocessing steps, we were left with total 7,476

training and 3,733 test instances.

We then specify an upper limit on the number of senses that ourclustering algorithm should discover. In

Experiment 1, we set this limit to 5 for SENSEVAL-2 words and 6for LINE. As we included all senses

at every rank above 5, without trying to break the ties, the actual number of senses in the evaluation data

could be 5 or more. Also, we set a similarity score cutoff to 0 which stops clustering as soon as there is no

pair of clusters with similarity above 0. This cutoff sometimes stops clustering prematurely before creating

5 clusters. Hence, even on selecting top 5 senses and creating 5 clusters, the actual number of discovered

clusters is not always same as the number of true senses in theevaluation data.

4.1.2 Results

For each word in the SENSEVAL-2 data and LINE, we conducted various permutations of Experiment 1,

each of which uses a different combination of features and measure of similarity. Specifically, we performed

total 8 experiments on each word using all combinations of 4 types of features (unigrams, bigrams, second-

order co-occurrences and mix) with 2 types of similarity measures (matching and cosine coefficients).

As this leads to a very large number of results to analyze (73 words * 8 experiments/word = 584), we

computed the average accuracy obtained for all words belonging to the same part of speech (POS) category

(nouns, adjectives and verbs). We also counted the number ofwords from each POS for which a particular

experiment did better than the majority classifier. As the word LINE uses larger amount of training and test

76

data than SENSEVAL-2 words, we do not include LINE in the nouncategory of SENSEVAL-2 words

and analyze its results separately.

Table 41 displays the average precision and recall for each POS category for SENSEVAL-2 words, and

Table 42 shows the same for LINE.

The first column indicates the POS, the second shows the feature type, the third lists the measure of similar-

ity, the fourth and the fifth show the average precision and recall of all words in that POS category for the

particular experiment shown by the 2nd and 3rd columns. The sixth column shows the average percentage

of the majority sense for all words in that POS. The final column shows the actual number of words in the

given POS that gave accuracy greater than the percentage of the majority sense of that word for a particular

combination of feature type and similarity measure as indicated by columns 2 and 3.

4.1.3 Analysis

Tables 43, 44 and 45 show the breakdown of SENSEVAL-2 resultsby part of speech (POS). Specifically,

each value in these tables indicates the number of words fromthe particular POS on which a particular

experiment (as indicated by the corresponding row and column labels) performed better than the majority

classifier.

Recall that there were total 29 nouns, 28 verbs and 15 adjectives. As these tables indicate, the performance

was overall better for verbs and nouns. But hardly any adjectives showed results better than the majority

classifier. We believe that, this could be because the adjectives in this data have skewed distributions that

results in a very high accuracy attained by the majority classifier, which makes this a difficult standard for

an unsupervised method to reach. Verbs and nouns, on the other hand, have fairly balanced distributions

which suggests that our strategy works better on the data in which no particular sense dominates.

Tables 46, 47 and 48 show a similar breakdown of results for SENSEVAL-2 words organized by the feature

type. Each table value shows the number of words from the POS indicated by the corresponding row, on

which a particular combination of feature type and similarity measure performed better than the majority

classifier.

These results show that the second order co-occurrences (SOCs) and unigrams achieved the overall best

77

Table 41: Experiment 1 Results : Features and Similarity Measures (SENSEVAL-2)

pos feat meas prec rec maj > maj

noun soc cos 0.49 0.48 0.57 6/29

mat 0.54 0.52 0.57 7/29

big cos 0.53 0.50 0.57 5/29

mat 0.52 0.49 0.57 3/29

uni cos 0.50 0.49 0.57 7/29

mat 0.52 0.50 0.57 8/29

mix cos 0.50 0.48 0.57 6/29

mat 0.54 0.51 0.57 5/29

verb soc cos 0.51 0.49 0.51 11/28

mat 0.50 0.47 0.51 6/28

big cos 0.54 0.45 0.51 5/28

mat 0.53 0.43 0.51 5/28

uni cos 0.42 0.41 0.51 13/28

mat 0.43 0.41 0.51 9/28

mix cos 0.43 0.41 0.51 12/28

mat 0.42 0.41 0.51 7/28

adj soc cos 0.59 0.54 0.64 1/15

mat 0.59 0.55 0.64 1/15

big cos 0.56 0.51 0.64 0/15

mat 0.55 0.50 0.64 0/15

uni cos 0.55 0.50 0.64 1/15

mat 0.58 0.53 0.64 0/15

mix cos 0.50 0.44 0.64 0/15

mat 0.59 0.54 0.64 2/15

78

Table 42: Experiment 1 Results : Features and Similarity Measures (LINE)

word feat meas prec rec maj > maj

line soc cos 0.25 0.25 0.17 1/1

mat 0.23 0.23 0.17 1/1

big cos 0.19 0.18 0.17 1/1

mat 0.18 0.17 0.17 1/1

uni cos 0.21 0.21 0.17 1/1

mat 0.20 0.20 0.17 1/1

mix cos 0.21 0.21 0.17 1/1

mat 0.20 0.20 0.17 1/1

Table 43: Experiment 1: #Nouns (out of 29)> MAJ

COS MATCH

SOC 6 7

BI 5 3

UNI 7 8

Table 44: Experiment 1: #Verbs (out of 28)> MAJ

COS MATCH

SOC 11 6

BI 5 5

UNI 13 9

79

Table 45: Experiment 1: #ADJ (out of 15)> MAJ

COS MATCH

SOC 1 1

BI 0 0

UNI 1 0

Table 46: Experiment 1: Performance of Second Order Co-occurrences

COS MATCH

N 6 7

V 11 6

A 1 1

Table 47: Experiment 1: Performance of Bigrams

COS MATCH

N 5 3

V 5 5

A 0 0

Table 48: Experiment 1: Performance of Unigrams

COS MATCH

N 7 8

V 13 9

A 1 0

80

Table 49: Experiment 1: Performance of Cosine Coefficient

SOC BI UNI

N 6 5 7

V 11 5 13

A 1 0 1

Table 50: Experiment 1: Performance of Matching Coefficient

SOC BI UNI

N 7 3 8

V 6 5 9

A 1 0 0

results, while bigrams didn’t do as well as was expected. However, we realize that most of the SENSEVAL-

2 words have about 100-200 total training instances, which is a fairly small sample of text from which to

learn word usages.

Simply put, smaller data leads to smaller number of bigrams.Moreover, bigram feature matching is more

demanding than single word matching since it requires two words be matched in a specific order within a

small window. Hence, the context vectors based on a smaller set of bigram features are quite sparse and do

not provide sufficient information about the target word. The poor performance of bigrams as shown by these

experiments suggests that these are not suitable features when the available training data is small in quantity,

as is the case of the SENSEVAL-2 words. This result motivatesus to consider either improving our

context representations or using larger collections of text for training, issues that we explore in subsequent

experiments.

Tables 49 and 50 compare the performance of two similarity measures: cosine and match coefficient. Specif-

ically, each value in these tables shows the number of words from a part of speech (as indicated by the row

label) that performed better than the majority classifier when using a particular feature type (as shown by the

column label) for the selected measure of similarity. Overall, if we look at the total of all values in Tables

81

49 and 50, we see that cosine performed better than match. This is expected, as the cosine measure takes

into account the lengths of the vectors, rather than simply counting the number of matching features.

We also note that the precision and recall of the clustering of the LINE data is generally better than that of

the majority sense regardless of the features or measures employed. We believe this is because the number

of training instances for the LINE data is significantly higher (1200) than that of the SENSEVAL-2 words.

The number and quality of features identified improves considerably with an increase in the amount of

training data, making the amount of training data availablefor feature identification critically important.

This motivates us to consider augmenting the training data for SENSEVAL-2 words by collecting instances

of these words from the World Wide Web or other larger text collections like the New York Times Newswire

corpus or the British National Corpus.

4.2 Experiment 2: First and Second Order Context Representations

In Experiment 1 we represent instances of words using first order context representations, and cluster them

using the agglomerative UPGMA algorithm in similarity space. In those experiments, we observed that no

matter what feature type we use, the first order context representations are always very sparse due to the fact

that each feature contributing to the context vector must occur in that context. Also, there is an additional

level of feature matching done by our similarity measure which looks for matching features among these

vectors. So, the methodology that we used in the previous experiments not only requires that a feature found

in the training is matched exactly in the test, but also expects two test contexts to have matching features to

get a similarity score.

In Experiment 1 we observed that this double feature matching (once while finding the context represen-

tations and again while computing the similarity scores) ultimately provides very little information to the

clustering algorithm, which simply gets a very sparse similarity matrix with very low similarity scores

among most of the pairs of contexts.

These findings motivated us to try a better context representation and clustering approach that do not rely

on literal feature matching between the test contexts. Experiment 22 was designed in response to these

2These experiments were originally published in the Proceedings of the Conference on Computational Natural Language Learn-

ing (CONLL-2004) [35]

82

concerns, and it employs a second order context representation with a hybrid clustering algorithm.

Specifically, these experiments make a systematic comparison among the first and second order context rep-

resentations using two different kinds of features (bigrams and co-occurrences) and two separate clustering

approaches. Contexts are first represented in vector space using the first and second order representations.

These vectors are directly clustered in vector space using ahybrid clustering method known as Repeated

Bisections [41]. Then, we compute pairwise cosine similarities among the context vectors and perform

clustering in similarity space using the UPGMA method, as was done for Experiment 1. We also reduce

the dimensionality of second order vectors via Singular Value Decomposition (SVD), in order to discover

similarities among the contexts that use conceptually related or synonymous features rather than literally

matching strings.

4.2.1 Data

In these experiments, we use 24 of the 73 SENSEVAL-2 words andthe LINE, HARD and SERVE

corpora.

The LINE, HARD and SERVE corpora do not have a standard training–test split, so these were randomly

divided into 60–40 training–test splits. Each of these corpora has about 4000 total instances and hence after

splitting, we get approximately 2400 training and 1600 testinstances.

Like Experiment 1, we decided to remove the low frequency senses of the SENSEVAL-2 words. However,

in Experiment 2 we removed the senses that occur in less than 10% of the total instances for the word. This

prevents us from knowing the number of senses associated with any given word, which was not the case

in Experiment 1, where we knew there were 5 senses per word. After removing the low frequency senses,

we selected all the words that are left with more than 90 training instances. This is because words with

fewer training examples than this will generally perform quite poorly due to the lack of a sufficient quantity

and quality of features. After this filtering we were left with a set of 24 words which includes 14 nouns, 6

adjectives and 4 verbs as shown in Table 51.

In Experiment 2 we also decided to experiment with discriminating senses of multiple target words simul-

taneously. For this we created data that has instances of multiple words. To do this, we randomly selected

five pairs of words from the SENSEVAL-2 data and combined the training and test instances separately

83

for each pair of words. This gave us a mix training and test sample that includes instances of two different

words. After mixing, we applied the 10% sense filter and removed the training and test instances whose

correct sense has frequency below 10% of the new mixed sample.

The evaluation of the mixed data is done as if we clustered instances of a single word that has as many senses

as the sum of the number of senses of the two mixed words. We do not expect to see two big coarse grained

clusters, each containing all instances of a single word, but rather we expect to obtain as many clusters as

the total number of senses in the mixed data.

We believed that this mix-word data could be either challenging or easy for discrimination, depending on the

degree to which the two mixed words are related. If they sharesome meanings, then our algorithm might

group together their instances, while if the words are unrelated then making coarse grained distinctions

between their senses should not be hard. As such, these mix-words provide data with both fine and coarse

sense granularities.

Tables 51 and 52 show all the words that were used in Experiment 2, along with their parts of speech.

Thereafter we show the number of training (TRN) and test instances (TST) that remain after filtering, and

the number of senses found in the test data (S), for each word.We also show the percentage of the majority

sense in the test data (MAJ).

In Experiment 2, we set the upper limit on the number of clusters to be discovered to 7. As can be seen from

column S in Tables 51 and 52, most of the words have 2 to 4 senseson average. Hence, by creating more

clusters, we can test our hypothesis that our clustering approach discovers approximately same number of

clusters as senses for that word. We detect the significant clusters by ignoring (i.e., throwing out) clusters

that contain less than 2% of the total instances. The instances in the discarded clusters are counted as

unclustered instances and are subtracted from the total number of instances while computing the precision

value.

4.2.2 Results

We present the discrimination results for six different configurations of features, context representations and

clustering algorithms. These were run on each of the 27 target words, and also on the five mixed words.

What follows is a concise description of each configuration.

84

• PB1 : First order context vectors, using co–occurrence features, are clustered in similarity space using

the UPGMA technique.

• PB2 : Same as PB1, except that the first order context vectors are clustered in vector space using

Repeated Bisections.

• PB3: Same as PB1, except the first order context vectors used bigram features instead of co–occurrences.

All of the PB experiments use first order context representations that correspond to the approach suggested

by Pedersen and Bruce.

• SC1: Second order context vectors of instances were clustered in vector space using the Repeated

Bisections technique. The context vectors were created from the word co–occurrence matrix whose

dimensions were reduced using SVD.

• SC2: Same as SC1 except that the second order context vectorsare converted to a similarity matrix

and clustered using the UPGMA method.

• SC3: Same as SC1, except the second order context vectors were created from the bigram matrix.

All of the SC experiments use second order context vectors and hence follow the approach suggested by

Schütze.

Experiment PB2 clusters using the Pedersen and Bruce style (first order) context vectors, but with the

Schütze like clustering scheme. SC2 tries to see the effectof using the Pedersen and Bruce style clus-

tering method on Schütze style (second order) context vectors. The motivation behind experiments PB3 and

SC3 is to evaluate bigram features in both PB and SC style context vectors.

The F–measure associated with the discrimination of each word is shown in Tables 51 and 52. Any score

that is significantly greater than the majority sense (according to a paired t–test) is shown in bold face. The

italicized entries show the best performance (including that of the majority classifier) for each word.

85

Table 51: Experiment 2: F-measures - First and Second Order Contexts (SENSEVAL-2)

word.pos TRN TST S PB1 SC1 PB2 SC2 PB3 SC3 MAJ

art.n 159 83 4 37.97 45.52 45.46 46.15 43.0355.34 46.32

authority.n 168 90 4 38.15 51.25 43.93 53.01 41.86 34.94 37.76

bar.n 220 119 5 34.63 37.23 50.66 40.87 41.05 58.26 45.93

channel.n 135 67 6 40.63 37.21 40.31 41.54 36.51 39.06 31.88

child.n 116 62 2 45.04 46.85 51.32 50.00 55.17 53.4556.45

church.n 123 60 2 57.14 49.09 48.21 55.36 52.73 46.4359.02

circuit.n 129 75 8 25.17 34.72 32.17 33.33 27.97 25.35 30.26

day.n 239 128 3 60.48 46.15 55.65 45.76 62.65 55.6562.94

facility.n 110 56 3 40.00 58.00 38.09 58.00 38.46 64.76 48.28

feeling.n 98 45 2 58.23 51.22 52.50 56.10 46.34 53.6661.70

grip.n 94 49 5 45.66 43.01 58.06 53.76 49.46 49.46 46.67

material.n 111 65 5 32.79 40.98 41.32 47.54 32.79 47.54 42.25

mouth.n 106 55 4 54.90 47.53 60.78 43.14 43.14 47.06 46.97

post.n 135 72 5 32.36 37.96 48.17 30.88 30.88 32.36 32.05

blind.a 97 53 3 53.06 61.18 63.64 58.43 76.29 79.1782.46

cool.a 102 51 5 35.42 39.58 38.71 34.78 33.68 38.7142.86

fine.a 93 59 5 47.27 47.71 47.71 33.93 38.18 47.71 41.10

free.a 105 64 3 48.74 49.54 52.54 55.46 45.00 52.99 49.23

natural.a 142 75 4 34.72 35.21 33.56 30.99 32.4038.03 35.80

simple.a 126 64 4 38.33 50.00 47.06 38.33 38.33 47.0650.75

begin.v 507 255 3 59.36 40.46 40.40 43.6670.12 42.55 64.31

leave.v 118 54 5 43.14 38.78 27.73 40.00 46.00 53.47 38.18

live.v 112 59 4 37.83 40.00 48.21 45.45 36.37 41.8257.63

train.v 116 56 5 28.57 33.96 28.57 34.28 26.67 32.08 33.93

86

Table 52: Experiment 2: F-measures - First and Second Order Contexts (LINE, HARD, SERVE, and mix)

word.pos TRN TST S PB1 SC1 PB2 SC2 PB3 SC3 MAJ

line.n 1615 1197 3 72.67 26.77 62.00 55.47 68.40 37.9772.10

hard.a 2365 1592 2 86.75 67.42 41.18 73.22 87.06 63.4187.44

serve.v 2365 1752 4 40.50 33.20 36.82 34.3745.66 31.46 40.53

cool.a-train.v 197 102 8 22.34 39.00 25.25 40.61 22.57 41.00 22.86

fine.a-cool.a 185 104 7 27.86 42.36 33.83 47.72 35.00 42.05 24.79

fine.a-grip.n 177 99 7 36.84 49.48 33.50 45.02 31.41 49.48 24.19

leave.v-post.n 204 113 829.36 48.18 32.11 41.44 23.85 41.8221.01

post.n-grip.n 208 117 8 28.44 43.67 28.44 41.05 26.55 34.2120.90

4.2.3 Analysis

We employ three different types of data in Experiment 2. The SENSEVAL-2 words have a relatively small

number of training and test instances (around 50-200). However, the LINE, HARD and SERVE data

is much larger, where each contains around 4200 training andtest instances combined. Mixed words are

unique because they combined the instances of multiple target words and thereby have a larger number of

senses to discriminate. Each type of data brings with it unique characteristics, and sheds light on different

aspects of our experiments. Hence, we analyze the results ofeach dataset separately.

SENSEVAL-2 data Table 53 compares PB1 against PB3, and SC1 against SC3, when these methods are

used to discriminate the 24 SENSEVAL-2 words. Our objectiveis to study the effect of using bigram

features against co–occurrences in first (PB) and second (SC) order context vectors while using relatively

small amounts of training data per word. Note that PB1 and SC1use co–occurrence features, while PB3

and SC3 rely on bigram features.

This table shows the number of nouns (N), adjectives (A) and verbs (V) where bigrams were more effective

than co-occurrences (bigram>co-occur), less effective (bigram<co-occur), and had no effect (bigram=co-

occur).

87

Table 53 shows that there is no clear advantage to using either bigrams or co–occurrence features in first

order context vectors (PB). However, bigram features show clear improvement in the results of second order

context vectors (SC).

Our hypothesis is that first order context vectors (PB) represent a small set of bigram features since they are

selected from the relatively smaller training data. These features are very sparse, and as such most instances

do not share many common features with other instances, making first order clustering difficult.

However, second order context vectors indirectly represent bigram features, and do not require an exact

bigram match between vectors in order to establish similarity. The matching is still performed at the single

token level. Thus, the poor performance of bigrams in the case of first order context vectors suggests that

when dealing with small amounts of data, we need to boost or enrich our bigram feature set by using some

other larger training source like a corpus drawn from the Web.

Table 54 shows the results of using the Repeated Bisections algorithm in vector space (PB) against that of

using UPGMA method in similarity space. This table shows thenumber of Nouns, Adjectives and Verbs

SENSEVAL-2 words that performed better (rbr>upgma), worse (rbr<upgma), and equal (rbr=upgma)

when using Repeated Bisections clustering versus the UPGMAtechnique, on first (PB) and second (SC)

order vectors.

In short, Table 54 compares PB1 against PB2 and SC1 against SC2. From this, we observe that with both

first order and second order context vectors, Repeated Bisections is more effective than UPGMA. This

suggests that it is better suited to deal with very small amounts of sparse data. This could be because the

Repeated Bisections method uses a partitional divisive approach that simply divides the given set of vectors

in space, rather than performing detailed pairwise comparisons as done by UPGMA. With sparse vector

representations as we get with smaller training, such fine comparisons in similarity space might not be

helpful as most of the instances will have low similarity values.

Table 55 summarizes the overall performance of each of theseexperiments compared with the majority

class. This table shows the number of words for which an experiment performed better than the majority

class, broken down by part of speech. Note that SC3 and SC1 aremost often better than the majority

class, followed closely by PB2 and SC2. This suggests that the second order context vectors (SC) have

an advantage over the first order vectors for small training data as is found among the 24 SENSEVAL-2

88

Table 53: Experiment 2: Bigrams vs. Co-occurrences

N A V

7 1 2 bigram>co-occur

PB 6 4 2 bigram<co-occur

1 1 0 bigram=co-occur

9 3 3 bigram>co-occur

SC 4 1 1 bigram<co-occur

1 2 0 bigram=co-occur

Table 54: Experiment 2: Repeated Bisections vs. UPGMA

N A V

PB 9 4 1 rbr>upgma

4 0 2 rbr<upgma

1 2 1 rbr=upgma

SC 8 1 3 rbr>upgma

2 5 0 rbr<upgma

4 0 1 rbr=upgma

words.

We believe that second order methods work better on smaller amounts of data, in that the feature spaces are

quite small, and are not able to support the degree of exact matching of features between instances that first

order vectors require. Second order context vectors succeed in such cases because they find indirect second

order co–occurrences of feature words and hence describe the context more extensively than the first order

representations.

With smaller quantities of data, there is less possibility of finding instances that use exactly the same set

of words. Semantically related instances use words that areconceptually the same but perhaps not lexi-

cally. Second order context vectors are designed to identify such relationships, in that exact matching is not

89

Table 55: Experiment 2: All vs. Majority Class

N A V TOTAL

SC3> MAJ 8 3 1 12

SC1> MAJ 6 2 2 10

PB2> MAJ 7 2 0 9

SC2> MAJ 6 1 2 9

PB1> MAJ 4 1 1 6

PB3> MAJ 3 0 2 5

required, but rather words that occur in similar contexts will have similar vectors.

LINE, HARD and SERVE data The comparatively good performance of PB1 and PB3 in the caseof the

LINE, HARD and SERVE data (see Table 52) suggests that first order context vectors when clustered with

UPGMA perform relatively well on larger samples of data.

Moreover, among the SC experiments on this data, the performance of SC2 is relatively high. This further

suggests that UPGMA performs much better than Repeated Bisections with larger amounts of training data.

These observations correspond with the hypothesis drawn from the SENSEVAL-2 results. That is, a large

amount of training data will lead to a larger feature space and hence there is a greater chance of matching

more features directly in the context of the test instances.Hence, the first order context vectors that rely on

the immediate context of the target word succeed as the contexts are more likely to use similar sets of words

that in turn are selected from a large feature collection.

Mix-Word Results Nearly all of the experiments carried out with the 6 different methods perform better

than the majority sense in the case of the mix-words. This is partially due to the fact that these words have

a large number of senses, and therefore have low majority classifiers which set an easy standard to reach. In

addition, recall that this data is created by mixing instances of distinct target words, which leads to a subset

of coarse grained (distinct) senses within the data that areeasier to discover than the senses of a single word.

Table 52 shows that the top 3 experiments for each of the mixed-words are all second order experiments

90

(SC). We believe that this is due to the sparsity of the feature spaces of this data. Since there are so many

different senses, the number of first order features that would be required to correctly discriminate them is

very high, leading to better results for second order vectors.

4.2.4 Conclusions

We conclude that for larger amounts of homogeneous data suchas the LINE, HARD and SERVE, the

first order context vector representation and the UPGMA clustering algorithm are the most effective at word

sense discrimination. We believe this is the case because ina large sample of data, it is very likely that the

features that occur in the training data will also occur in the test data, making it possible to represent test

instances with fairly rich feature sets. When given smalleramounts of data like SENSEVAL-2, second

order context vectors and a hybrid clustering method like Repeated Bisections perform better. This occurs

because in small and sparse data, direct first order featuresare seldom observed in both the training and the

test data. However, the indirect second order co–occurrence relationships that are captured by these methods

provide sufficient information for discrimination to proceed.

4.3 Experiment 3: Local and Global Training

From the results of Experiments 1 and 2, we realized the need for large amounts of training data. Hence, in

Experiment 3, we employ a large newswire corpus instead of relying on a smaller volume of available local

training data. Unlike the local training data, the newswiretext is a running corpus that includes complete

news articles, and is not simply a collection of contexts associated with a specific target word.

The goal of Experiment 3 is to test if a large sample of running(or global) text is a better source of training

data for sense discrimination than is a smaller sample of local training data as was used in Experiments 1

and 2. In this section, we present a comparison of results obtained in Experiment 2 against those obtained

by using the global training data.

91

4.3.1 Data

In particular, we used the Associated Press Worldstream English Service (APW) newswire as the source

of global training data. This was distributed as a part of theEnglish GigaWord corpus by Linguistic Data

Consortium (LDC), at the University of Pennsylvania. This data consists of text collected from the APW

newswire from November 1994 to June 2002. It contains a totalof 1,477,466 articles and 539,665,000

words. Each news article is divided into a number of paragraphs, each of which we treat as a separate

context. When counting bigrams or word co-occurrence pairs, we assume that the scope of each context

ends at the paragraph boundary and don’t consider pairs of words that span across paragraph boundaries as

features. Also, due to the large size of this data, we did not use any window for bigram and co-occurrences.

Hence, only pairs of words immediately next to each other areconsidered.

The test instances are made up of the same SENSEVAL-2 words and the LINE, HARD and SERVE cor-

pora as used in Experiment 2. All the preprocessing was done in the exactly same manner as in Experiment

2, in order to allow for the direct comparison of results.

4.3.2 Results

Table 56 shows F-measure values obtained by running the samesix configurations of feature, context, and

clustering types as used in Experiment 2, which featured local training. As before, the bold face entries

show where the results were significantly more accurate thanthe majority classifier. The maximum value

in each row including the majority sense is italicized. Entries marked X indicate that we we were unable to

get SC1 and SC2 results on some words, in particular day.n, begin.v and the line.n, hard.a and serve.v. The

co-occurrence matrices created for these words were too large (approximately 7000 x 200,000) to carry out

Singular Value Decomposition due to the large amount of memory required to perform the computations.

In future, we plan to adjust the cutoff values on frequency and statistical measures of association in the

hopes of reducing the number of features. Also, we will explore the use of computationally more efficient

implementations of SVD.

Table 57 shows a pairwise comparison of results with global and local training for each experiment on each

word. A mark of G indicates that the global experiment was better than the corresponding local experiment,

while L indicates otherwise. X shows either a tie between global and local results, or cases where we could

92

Table 56: Experiment 3: F-Measures with Global Training

word.pos PB1 SC1 PB2 SC2 PB3 SC3 MAJ

art.n 47.50 29.42 35.66 39.73 44.17 28.9946.32

authority.n 34.15 32.00 41.13 39.49 37.29 35.14 37.76

bar.n 66.09 32.86 45.00 52.81 48.31 31.53 45.93

channel.n 58.02 35.20 45.53 42.75 51.13 33.0731.88

child.n 54.94 32.18 35.00 49.09 52.99 33.7356.45

church.n 55.91 32.50 40.00 62.86 54.87 33.73 59.02

circuit.n 40.00 40.00 48.00 48.00 34.67 38.67 30.26

day.n 44.92 X 31.70 X 52.59 29.45 62.94

facility.n 39.13 35.95 45.78 33.34 40.74 36.1548.28

feeling.n 54.05 38.10 27.59 50.66 56.10 32.7861.70

grip.n 58.33 40.00 30.59 53.19 44.21 34.48 46.67

material.n 36.67 33.62 34.23 34.92 35.94 39.2942.25

mouth.n 46.46 36.36 35.95 39.5948.60 35.16 46.97

post.n 47.82 34.92 43.90 32.62 36.62 40.32 32.05

blind.a 41.86 29.41 30.98 51.95 49.48 31.8882.46

cool.a 42.56 36.95 42.69 48.49 43.30 29.55 42.86

fine.a 44.04 30.48 33.66 41.74 45.22 33.01 41.10

free.a 48.74 36.17 28.57 43.86 47.54 39.1349.23

natural.a 34.78 35.00 44.83 35.04 33.33 36.80 35.80

simple.a 45.90 34.61 33.01 41.02 43.20 33.0150.75

begin.v 53.44 X 31.89 X 65.62 36.51 64.31

leave.v 43.39 34.41 30.93 39.62 47.17 39.13 38.18

live.v 38.53 35.05 36.56 33.65 35.09 36.9557.63

train.v 37.38 41.66 42.86 39.25 30.91 37.11 33.93

line-n 74.27 X 51.00 X 71.28 43.75 72.10

hard-a 86.87 X 35.12 X 74.23 45.64 87.44

serve-v 39.58 X 42.14 X 36.79 35.18 40.53

93

Table 57: Experiment 3: Comparing Global and Local Training

word.pos PB1 SC1 PB2 SC2 PB3 SC3Best

art.n G L L L G L L

authority.n L L L L L X L

bar.n G L L G G L G

channel.n G L G G G L G

child.n G L L L L L L

church.n L L L G G L G

circuit.n G G G G G G G

day.n L X L X L L L

facility.n L L G L G L L

feeling.n L L L L G L L

grip.n G L L X L L X

material.n G L L L G L L

mouth.n L L L L G L L

post.n G L L G G G L

blind.a L L L L L L L

cool.a G L G G G L G

fine.a L L L G G L L

free.a X L L L G L L

natural.a X X G G X L G

simple.a G L L G G L L

begin.v L X L X L L L

leave.v X L G X G L L

live.v X L L L L L L

train.v G G G G G G G

line.n G X L X G G G

hard.a X X L X L L L

serve.v L X G X L G L

94

Table 58: Experiment 3: Summarizing Global vs. Local Comparisons

G L X

PB1 12 10 5

PB2 8 19 0

PB3 17 9 1

SC1 2 19 6

SC2 10 10 7

SC3 5 12 1

not compute the global results as indicated in Table 56.

The last column of table 57 compares the best result obtainedwith global training against the best result

obtained with local. The G entry indicates that for that particular word, the highest performance obtained

with global training was greater than the highest performance obtained with local training, among the six

variations we attempted. L shows otherwise, meaning, the best result of local was better than the best global.

X shows the tie between the best global and local. As the tablesuggests there are very few words on which

global data improved the performance. We notice that most ofthese words (exceptline) are among the

words that have the least majority sense frequency combinedwith a larger number of senses. Note that, this

combination of large number of senses and lower majority leads to smaller set of instances using each sense,

which in turn leads to overall poor quality feature set that doesn’t have sufficient features for any sense. The

nouncircuit is an extreme case with maximum number of senses (8) (even after filtering) and clearly shows

quite a lot improvement in all the experiments with global training. This suggests that with large number of

senses and lower majority, a larger volume of global data provides better features than smaller amounts of

local data.

Table 58 summarizes the information in Table 57 by counting the total number of words for each of the

experimental configurations on which the specific type of training was most successful. Specifically, the

rows represent the six configurations: PB1, SC1, PB2, SC2, PB3, and SC3. The values in column G

indicate the total number of words for which global trainingwas better for the experiment indicated by the

corresponding row label. Similarly, the values in column L indicate the number of words for which local

training was better and X indicate the ties.

95

This table shows that global training only improved the performance of configurations PB1 and PB3, both

of which used the first order contexts and UPGMA clustering. As discussed in the previous sections, both

the settings are especially challenging for smaller amountof training data due to the combination of smaller

feature sets, sparse first order context vectors and rigorous comparisons done by UPGMA in similarity

space. Global training in this case provides better features (and hence context representations) compared to

smaller quantity of local training. However, overall comparison shows that local training even though was

employed in smaller amount proves better than larger globaltraining for most of the words and most of the

other configurations.

4.4 Experiment 4: Augmenting Training Data with Dictionary Content

In all the experiments thus far, we took a knowledge–lean approach that uses no additional information

other than what is present in the raw text. As we noticed in Experiments 1 and 2, this approach doesn’t

succeed very well when there are small quantities of training data. In Experiment 3, we tried to overcome

this limitation by using a large amount of newspaper text as training corpora. However, we found that the

performance obtained with global training was no better than local training. Hence, in Experiment 4, we

decided to take a more knowledge intensive approach, and utilize the content of an electronic dictionary to

improve the quality of our training data.

Recall that second order context vectors represent contexts by an average of the feature vectors of words

that appear in that context. A feature vector (like a co-occurrence or bigram vector) is assumed to provide

information about the meaning of the corresponding featureword, in terms of the words that often co-occur

with it in the given training data. If the training data is limited in size, as was the case in Experiments 1 and

2, the feature vectors will be represented in fewer dimensions and would not have sufficient information to

convey the meaning of that word, or in turn, the meaning of thecontext in which they occur.

In Experiment 4, we enrich these corpus derived feature co-occurrence vectors by adding words that describe

the meaning of this feature word in a dictionary. Thus, we represent each feature word observed in the

context of the target word in a test data by a vector of words that are either observed in the context of that

word in training or that appear in its dictionary definition.

We hypothesize that for each word there is an associated set of words that a human judge would say are

96

related. The nature of this relationship can vary, but it might exist because the words frequently co–occur,

or they have similar meanings, or they are used to define each other.

For example, some of the words that a human might think of whenthey hear the wordSHELLareSEASHORE,

AMMUNITION, ARTILLERY, COVERING, GUNS, FIRE, EXPLOSIVE, ENVELOP,etc. We noticed that

these are essentially the words that are found in the dictionary definition ofSHELL, or they are found in

the context ofSHELL in some text. This observation led to Experiment 4, where we decided to augment

the word co-occurrence vectors as derived from the small training data with the words that appear in the

dictionary definition (orgloss) of that word.

We used WordNet-2.0 [12] in Experiment 4 as the source of glosses, but any other machine readable dictio-

nary would suffice. For each word observed in the context of the target word in the test data, we construct

a binary co-occurrence vector that shows the words that co-occur in the context of this word in the training

data. We then augment each co-occurrence vector with all thecontent words that appear in the glosses of

various senses of that word.

For example, suppose we observeBOMBin the context of our target wordSHELLSin a test instance. Then,

we first create a co-occurrence vector forBOMBthat shows the words that co-occur with this word in training

data. Suppose, we observe wordsATOM, NUCLEAR, BLAST, ATTACK, DAMAGE, KILLin the context of

BOMB in our training. Note that, this can be viewed as a purely corpus based co-occurrence vector. Now,

we refer to WordNet and see the words that appear in various glosses of the wordBOMB. Some of such

words areATTACK, DENOTE, EXPLOSIVE, VESSEL, HEAT. We refer to this as a gloss vector. In these

experiments, we take the union of the corpus derived co-occurrence vector with the gloss vector as:

ATOM, NUCLEAR, BLAST, ATTACK, DAMAGE, KILL, DENOTE, EXPLOSIVE, VESSEL, HEAT.

In summary, if a word is observed in the context of the target word in a test instance, and appears in both

training and WordNet, then its feature vector is a union of its gloss vector and corpus–derived co-occurrence

vector. If the word doesn’t appear in the training data but appears in WordNet, its feature vector is same

as its gloss vector as derived from WordNet. On the other hand, if the word appears in training but not in

WordNet, its vector is same as the corpus–derived co-occurrence vector. And finally, if the word doesn’t

appear in either training or WordNet, there will be no vectorassociated with it. And it will contribute no

information to the context vector of an instance in which it appears. In short, a context vector is simply an

97

addition (binary OR function) of all feature vectors of content words that appear in the context.

Since the gloss augmentation to the corpus derived co-occurrence vectors leads to significant growth in the

dimensionality of the feature space, we perform SVD to reduce the size of the feature space. In this set of

experiments, we reduce the feature space to 2% of its size after gloss additions.

The context vectors are then clustered using UPGMA which showed better performance over Repeated

Bisections for a larger amount of training data in our previous set of experiments.

4.4.1 Data

As in previous experiments, here we also used the SENSEVAL-2corpus, and the LINE, HARD and

SERVE corpora.

Low frequency senses from the SENSEVAL-2 words were filteredusing a 5 percent sense-filter. In these

experiments, we did not select any subset of SENSEVAL-2 words based on the size of training as the

training data for all words will be augmented with WordNet glosses. however, we did remove the word

ferret since it only has three test and training instances in total.Thus, we used 72 of the 73 SENSEVAL-2

words in these experiments.

As was the case in previous experiments, the LINE, HARD and SERVE corpora were randomly split into

60–40 training–test partitions. Thus, for all the words thetraining data consists of the local contexts around

a specific target word as was used in Experiments 1 and 2. Finally, in this experiment we found 10 clusters

for each word.

4.4.2 Results and Analysis

Table 59 shows the F–measure of word sense discrimination attained for each word, with(F-gl) and without

(F-nogl) gloss augmentation. Entries in bold type show the experiments where gloss augmented feature

vectors resulted in significantly better performance than using feature vectors derived strictly from training

data.

Out of the 72 SENSEVAL-2 words, a total of 43 showed improved F-measures using gloss augmented

feature vectors. There were seven words that showed no significant change, which suggests that only 22

98

words showed drop in the F-measure on gloss augmentation. Inaddition, all of these 43 words also showed

improved recall when using gloss augmented feature vectors, which shows that the number of instances

correctly clustered was increased due to the use of the glossaugmentation.

Further examination showed that not all of the 43 words that improved overall showed a corresponding

increase in their precision. This further indicates that the gloss augmentation not only increased the number

of instances correctly clustered but also increased the total number of instances attempted by the algorithm.

This is because the rise in the total number of instances correctly clustered as indicated by the improved

recall, was accompanied by a rise in the total number of instances attempted, resulting in relatively steady

precision.

Our hypothesis is that the sparsity in the feature vectors without gloss augmentation left large number

of instances unclustered due to very low levels of similarity with any of the other instances. We believe

that gloss augmentation increases the likelihood of discriminating instances that have a very distinct set

of features that may not be shared by other instances. Thus, the gloss augmentation allowed for a certain

amount of standardization in the feature vectors, which raised the number of instances that were successfully

clustered.

However, the results forline, hard andservedo not show any clear improvement when using gloss aug-

mented feature vectors. We believe that this is due to the fact that most of the words that occur in the

dictionary glosses of these words have already occurred in these larger samples of training data, so the gloss

information is essentially redundant. Thus, we believe that gloss augmented feature vectors are particularly

useful for situations where unsupervised discrimination must be performed using smaller samples of training

data.

99

Table 59: Experiment 4: F–measures with(F-gl) and without(F-nogl) gloss augmentation

word F-nogl F-gl word F-nogl F-gl word F-nogl F-gl

art.n 40.00 50.95 authority.n 49.70 40.00 bar.n 54.39 50.44

begin.v 49.69 59.88 blind.a 32.43 45.00 bum.n 60.32 36.36

call.v 35.44 37.11 carry.v 44.74 40.97 chair.n 48.00 71.03

channel.n 45.16 32.81child.n 56.86 50.91 church.n 41.76 54 .37

circuit.n 42.46 34.24 collaborate.v 40.00 59.09 colourless.a 56.00 58.62

cool.a 31.32 35.56 day.n 44.15 65.31 detention.n 62.22 42.55

develop.v 34.55 39.64 draw.v 41.86 52.38 dress.v 37.89 37.50

drift.v 39.29 46.43 drive.v 45.61 54.54 dyke.n 48.78 60.00

face.v 41.79 77.01 facility.n 43.90 46.00 faithful.a 4 2.42 42.42

fatigue.n 49.18 64.79 feeling.n 33.90 46.58 find.v 30. 23 41.86

fine.a 41.51 48.21 fit.a 40.91 40.91 free.a 45.61 47. 79

graceful.a 38.89 38.89 green.a 56.21 55.07grip.n 41.46 53.33

hearth.n 57.70 44.90 holiday.n 37.74 44.89 keep.v 35.82 67.50

lady.n 37.34 54.54 leave.v 50.98 39.60 live.v 36.36 31.77

local.a 44.07 41.94 match.v 41.27 52.94 material.n 38.71 41.60

mouth.n 33.71 39.21 nation.n 59.26 76.67 natural.a 33.07 34.78

nature.n 36.84 33.73 oblique.a 40.00 54.55 play.v 48.72 37.33

post.n 47.70 39.39 pull.v 45.28 44.44 replace.v 38.24 52.38

restraint.n 40.54 35.90 see.v 33.34 34.70 sense.n 32.19 39.08

serve.v 50.64 45.98 simple.a 33.96 47.06 solemn.a 25.00 47.06

spade.n 44.90 48.14 stress.n 42.86 36.07strike.v 37.50 40.62

train.v 41.13 41.13 treat.v 47.76 47.37 turn.v 40.00 34.62

use.v 31.20 62.12 vital.a 5.56 5.56 wander.v 30.13 56.41

wash.v 66.67 60.00 work.v 39.21 49.18 yew.n 56.41 68.19

line.n 43.13 43.04 hard.a 67.25 67.09 serve.v 38.54 36.60

100

5 Conclusions

One of the main objectives of this thesis was to determine theimpact on word sense discrimination of

different feature types, context representations and clustering methods.

This thesis shows that there is no unique configuration of choices that gives the best results on all datasets.

However, we do make specific recommendations for carrying out discrimination, based on the nature and

volume of data used for training and clustering.

The following sections summarize what settings achieve thebest discrimination under the different scenarios

we considered.

5.1 Smaller Datasets

We observed that smaller amounts of training data lead to smaller feature sets. First order context repre-

sentations based on smaller feature sets tend to be very sparse since they are based strictly on features that

appear in the contexts being discriminated. Among the various features we employed, we observed that

single token features (e.g., unigrams, co-occurrences) perform better with smaller datasets than multi-token

features (e.g., bigrams), which are less likely to occur in acontext being discriminated.

Feature sets that are both small and sparse make the first order features a limited presentation of contexts that

does not convey much information about the meaning of the target word. Similarity measures add an extra

level of feature matching by seeking matching features among the contexts, which makes the similarity

space representations even more sparse than the corresponding vector space representations. Given such

very sparse and limited information, the agglomerative clustering methods that rely on rigorous pairwise

comparisons among the contexts did not fare very well.

On the other hand, second order context representations introduce additional information into the context

vectors by adding feature vectors of contextual words. The words representing dimensions of the context

vectors are not required to appear in the contexts of the target word but do appear in the contexts of the

contextual feature words. Hence, the 2nd order contexts tend to be more dense, informative and extensive

representations of contexts even with smaller feature sets. We also noticed that the indirect representation of

bigrams in second order contexts proves more effective thanmatching two word sequences as done by the

101

first order contexts. We also observed that the dimensionality reduction helps in identifying contexts that

use similar or related sets of features rather than literally matching text strings.

Considering the smaller number of dimensions in a feature space that results from smaller training data,

when combined with the inherent sparsity in natural language text, we showed that the partitional clustering

approach that directly clusters contexts in vector space ismore effective than agglomerative clustering in

similarity space.

In summary, with a smaller volume of training and test data, the second order context representations using

either bigram or co-occurrence features, when clustered using vector space hybrid methods like repeated

bisections, tend to achieve better discrimination.

5.2 Larger Datasets

Larger local training data that consists of contexts arounda specific target word seems to provide overall

better quality and quantity of features. As the improved feature selection increases the likelihood of directly

matching these features in the contexts of test instances, the first order context representations get richer

and provide some substantial information about the features directly observed near the target word in the

contexts. This in turns improves the chances of detecting direct similarities among the contexts in terms of

the shared features. Under these conditions, we noticed that the detailed pairwise comparisons done by the

agglomerative clustering algorithm result in better discrimination than a hybrid clustering approach such as

Repeated Bisections.

But, we noticed some adverse effects on second order contexts with the additional training data. We believe

this is because they include some extra information into thecontexts by adding co-occurrences of contextual

features. This technique could in fact introduce significant amounts of noise that in turn can obscure the fine

level distinctions between the contexts. In other words, when the first order contexts already have sufficient

information to identify similar contexts, the added information about co-occurrences of feature words is not

necessary and in fact can confuse the clustering algorithm.

102

5.3 Global Training with Large Generic Text

Our experiments with large global training showed that it doesn’t perform as well as local training done with

a smaller quantity of data. Global training only seems to boost the performance of the first order contexts,

especially those that use bigram features collected from a smaller sample of local training. In such cases,

we noticed that the larger volume of data gives better features that improve the first order representations.

It also helped in discriminating instances of words that have a large number of senses. In short, we noticed

that global training can only outperform the discrimination results obtained with insufficient local training.

In the majority of cases, however, even smaller local training proved better than larger global training.

5.4 Comparisons Against a Knowledge–Intensive Approach

We compared our results obtained with a knowledge–lean approach against those obtained with a more

knowledge–intensive method that incorporated dictionarydefinitions of feature words into contexts. For

each word observed in the context of a test instance, we created a feature vector of words that co-occur with

that feature word in the training data. we then augmented each feature vector with words that appear in the

WordNet gloss of the feature word. 2nd order context vectorswere then computed by averaging such gloss

augmented feature vectors of words found in the contexts.

We found that this gloss augmentation only proved better in cases when smaller training data was used for

creating feature vectors, and didn’t prove useful in combination with larger data. This suggests that the

co-occurrence behavior of words as learned from a large raw text certainly has the potential to outperform

knowledge–intensive methods.

103

6 Related Work

There is a long history of research in supervised approachesto word sensedisambiguation. Typically these

approaches train a model by presenting it with some number ofmanually created sense tagged examples

for a particular word (e.g., [5], [7],[26], [29], [22]). After training, these models are able to assign one of a

predefined set of meanings to newly encountered instances ofa word.

However, word sense discrimination is a different problem.Rather than trying to assign an instance of

a word to one of a set of possible meanings, it seeks to group together instances of words that are used

in similar contexts. The motivation behind taking this approach is that a predefined set of meanings (as

provided by a dictionary or similar resource) is often too inflexible and limited to account for word usages

in actual text. In addition, sense tagged text only exists insmall quantities and is expensive to create.

Methods of discrimination that discover meanings of words from raw text avoid both of those limitations,

and have become more widely studied as the amount and varietyof online text continues to increase. Thus,

word sense discrimination lends itself to unsupervisedknowledge leanapproaches, while word sense dis-

ambiguation tends to be pursued using harder to obtain resources such as sense tagged text.

The following discussion pays particular attention to earlier discrimination work by Schütze and by Pedersen

and Bruce. The combination of these two bodies of research serves as the foundation of this thesis. There

is also discussion of the related problems of finding sets of words with the same or similar meaning, and

bootstrapping approaches that use very small amounts of training data to initiate a fully automatic process.

6.1 Word Sense Discrimination

This thesis explores the effect of vector versus similarityspace representations, as well as first order versus

second order features. These issues were raised in two different bodies of previous work that provide a

starting point for this thesis. Pedersen and Bruce ([30], [31]) explored the use of similarity spaces and first

order features, while Schütze ([38], [39]) developed an approach based on vector spaces and second order

features. In this thesis, we seek to compare, contrast, and extend these methods.

Pedersen and Bruce compare various hierarchical agglomerative clustering algorithms, and recommend the

use of McQuitty’s Similarity Analysis [24]. In fact, McQuitty’s method is a form of hierarchical agglom-

104

erative clustering that uses the average link criteria function. It starts by assuming that each instance is a

separate cluster. It merges together the pair of clusters that have the highest average similarity value. This

continues until a specified number of clusters is found, or until the similarity measure between every pair of

clusters is less than a predefined cutoff.

Pedersen and Bruce use a relatively small number of first order features. They create a dis–similarity matrix

by using the matching coefficient as their criterion. Ratherthan using the number of features that match,

they used the number of features that didn’t match, and treatthis as a distance measure. The context of a

target word is represented using localized first order features such as collocations and part of speech tags

that occur within one or two positions of the target word.

By way of contrast, Schütze [39] performs discrimination through the use of a vector based representation.

In fact, he employs two different vectors: the first is a word vector that is based on co–occurrence counts

from a separate training corpus. Each word in this corpus is represented by a vector made up of the words

with which it co-occurs. These vectors are then reduced via Singular Value Decomposition. Then, each

instance in a test or evaluation corpus is represented by a vector that is the average of all the vectors of all

the words that make up that instance. Discrimination is carried out by clustering instance vectors using a

hybrid clustering method that integrates the EM Algorithm with agglomerative clustering.

Below we summarize some of the significant differences in theapproaches suggested by Pedersen and Bruce

and by Schütze. In this thesis we carry out experiments thatisolate some of these differences, in order to

determine which techniques are most effective for word sense discrimination.

Context Representation Pedersen and Bruce represent the context of each test instance as a vector of

features that directly occur near the target word in that instance. We refer to this representation as the first

order context vector. Schütze, by contrast, uses the second order context representation that averages the first

order context vectors of individual features that occur near the target word in the instance. Thus, Schütze

represents each feature as a vector of words that occur in itscontext and then computes the context of the

target word by adding the feature vectors of significant content words that occur near the target word in that

context.

105

Features Pedersen and Bruce use a small number of local features that include co–occurrence and part

of speech information near the target word. They select features from the same test data that is being

discriminated, which is a common practice in clustering in general. Schütze represents contexts in a high

dimensional feature space that is created using a separate large corpus (referred to as the training corpus).

He selects features based on their frequency counts or log-likelihood ratios in this corpus.

In this thesis, we adopt Schütze’s approach and select features from a separate corpus of training data, in part

because the number of test instances may be relatively smalland may not be suitable for selecting a good

feature set. In addition, this makes it possible to explore variations in the training data while maintaining a

consistent test set. Since the training data used in unsupervised clustering does not need to be sense tagged,

in future work we plan to develop methods of collecting very large amounts of raw corpora from the Web

and other online sources and use it to extract features.

Schütze represents each feature as a vector of words that co–occur with that feature in the training data.

These feature vectors are in fact the first order context vectors of the feature words (and not target word).

The words that co–occur with the feature words form the dimensions of the feature space. Schütze reduces

the dimensionality of this feature space using Singular Value Decomposition, which is also employed by

related techniques such as Latent Semantic Indexing [10] and Latent Semantic Analysis [19]. SVD has the

effect of converting a word level feature space into a concept level semantic space that smoothes the fine

distinctions between features that represent similar concepts.

Clustering Space Pedersen and Bruce represent instances in a (dis)similarity space where each instance

can be seen as a point and the distance between any two points is a function of their mutual (dis)similarities.

The (dis)similarity matrix showing the pair-wise (dis)similarities among the instances is given as the input

to the agglomerative clustering algorithm. The context group discrimination method used by Schütze, on

the other hand, operates on the vector representations of instances and thus works in vector space. Also he

employs a hybrid clustering approach which uses both an agglomerative and the Estimation Maximization

(EM) algorithm.

While the focus of this thesis has been on Pedersen and Bruce,and on Schütze, there have been other

approaches to purely unsupervised word sense discrimination. For example, [13] describe a method for

discriminating among verb senses based on determining which nouns co–occur with the target verb. Collo-

106

cations are extracted which are indicative of the sense of a verb based on a similarity measure they derive.

6.2 Finding Sets of Related Words

Finding sets of related words is a close cousin to the problemof word sense discrimination. The objective

is to identify words such asgunandpistol that are often used in the same context, and have essentiallythe

same meaning. While this is not identical to word sense discrimination, the fact that it is based on finding

words that occur in similar contexts makes it very closely related.

Some work on this problem has focused on finding distributional regularities among word occurrences in

raw corpora, and grouping together those words that occur insimilar contexts. These approaches are based

purely on lexical information, and well known examples include [6] and [32]. This style of approach is

most closely related to our own, in that only information from raw corpora is employed in making these

distinctions.

Other approaches incorporate syntactic information in theform of part of speech tags or partial parses, and

identify words that occur in similar contexts based on a combination of textual and syntactic information.

Examples include [14], [23], [8], and [28]. The latter two approaches go beyond simply identifying sets of

related words and attempt to group those sets into a hierarchy of concepts, where more specific concepts are

a form of the more general concepts.

Finally, there are approaches that are initialized with a few seed concepts, and find those words that are

related to the given seeds (e.g., [37], [36], [33]). For example,gunmight be given as a seed, and the method

would findpistol, flintlock, andartillery. In general these approaches utilize a combination of lexical and

syntactic information.

6.3 Bootstrapping Approaches

There is also research at the intersection of supervised andunsupervised methods. In fact this is more closely

related to supervised learning, since the objective remains to create a classifier which will assign an instance

of a word to one of a predefined set of possibilities. However,these methods are often minimally supervised,

and use a small amount of training data in order to automatically create more training data, or in other words

107

bootstrapa large sample of training data from a much smaller sample of sense–tagged data.

The best known example of such an approach is [43], who describes a method that automatically identifies

collocations that are indicative of the sense of a word, and uses those to iteratively label more examples. For

example, in a large corpus that contains instances ofplant, it might be that the collocationsmanufacturing

plant andflowering plantwould be identified using standard statistical techniques.A human judge could

easily determine that these are associated with two distinct senses ofplant, and easily label all occurrences

of plant in each collocation in the corpus with the appropriate sense. Then these examples could be fed back

into the learning algorithm, and the resulting model could be used to create more training examples.

108

7 Future Work

There are many issues that arose during this thesis that suggest future directions for research. These include

ideas to improve existing techniques, as well as some new variations that might lead to better discrimination.

In addition, we have realized that our methodology is suitedto a broad range of problems that extends well

beyond word sense discrimination. What follows are our plans for future work.

Training The rather limited effectiveness of global training suggests that we need to revise our feature

selection and dimensionality reduction strategies so as toavoid the noise that comes from global data. Also,

it encourages us to devise techniques for collecting largeramounts of local training data. In the near future,

we will try to use the local contexts around a specific target word for training data as collected from some

large text collection like the English Gigaword Corpus, theBritish National Corpus or the World Wide Web.

Since pure global training seems to have limitations, we will also try to combine it with available smaller

local training to determine if that proves better than pure local or pure global training approaches.

In short, the possible variations in training that we would still like to pursue are local training boosted with

global training, and enhanced local training by collectinglocal contexts around the target word from various

sources of large text collections.

We also plan to make a more systematic comparison of our knowledge–lean approach against the knowledge–

intensive approach, as taken during the gloss experiments.This should help determine if the corpus based

approach to discrimination is better than the dictionary based approach under any circumstances.

Features In the future, we will employ richer feature types that use the part of speech or morphology of

words and do not just rely on their surface forms. Also, we will explore techniques like stemming and fuzzy

feature matching that will hopefully result into richer context representations.

Context Representations This thesis showed that first order context representationsare more suitable for

large feature sets and larger amounts of training data whilesecond order contexts are more effective when

the available training data is small. This gives us an idea ofusing backoff models that move from first order

to second order representation for very sparse contexts. Wewould also like to combine first and second order

109

context representations in a way that will essentially record both the feature word and its co-occurrences in

the context vectors.

SVD We have not yet conducted any experiments to test if the dimensionality reduction has a measurable

impact on results. In future, we plan to answer this questionby systematically comparing the results of

discrimination with and without using SVD. We will also determine the effect of using different reduction

factors while carrying out SVD.

Clustering In this thesis, we avoid exactly specifying the number of clusters we expect to find by creating

some arbitrarily large number of clusters and then ignoringthe extra clusters during evaluation. We under-

stand that this logic results in very low accuracy values if the extra clusters contain a significant number of

the instances to be discriminated.

In future, we plan to merge such extra clusters with one of thelabelled clusters that shares maximum inter-

cluster similarity with that extra cluster. However, this doesn’t address the problem of creating the right

number of clusters at the first place and without using the knowledge of true classification. One possible

solution could be to simply run clustering multiple times, each with a different number of clusters to be

found, and then pick the solution that gives the overall maximum intra–cluster similarity and minimum

inter–cluster similarity.

Cluster Labeling We have developed a methodology that creates clusters of instances of a target word

that refer to the same sense. We currently do not make any attempt to identify which sense each cluster

represents. In future, we plan to attach some descriptive labels to the discovered clusters that indicate the

sense these clusters represent. Such labels can be created from the features shared by instances in the same

cluster and those not shared by instances in other clusters.By comparing such labels with actual dictionary

senses of a word, we can determine how well a knowledge–lean approach can perform fully automatic word

sense disambiguation without relying on any manually annotated training data or other external knowledge

source.

110

Applications Our focus in this thesis has been on word sense discrimination. However, we have come

to realize that the idea of clustering similar text instances could find direct applications in a variety of

natural language processing tasks like text summarization, synonymy identification, document clustering

and indexing, etc.

There are a number of applications that we would like to explore in the near future.

• Automatic Email Foldering

In the same way that wwe cluster contexts that contain a specific target word, we can treat each email

as a single context and cluster a collection of emails based on the similarity of their contents. In this

case there would not be a specific target word, rather an entire email message would be both the target

and the context. The development of such a technique will help to automatically organize a large

corpus of emails based on their content.

• Name Discrimination

This is the task of trying to identify the different people associated with the same name. If we think of

the actual people with the same name as different meanings ofthat ambiguous name, we can see that

this is essentially the word sense discrimination problem.Given a number of text instances that refer

to an ambiguous name, our algorithm will try to automatically group together all instances that refer

to the same person. For example, if we search Google for ”Ted Pedersen”, we hit many pages some

of which refer to Prof. Ted Pedersen at University of Minnesota, Duluth, while, others to the author

of children’s books like ”Internet for Kids”, ”Gipsy World”, ”Ghost on the Net”, etc. Given these

two different personalities of the same name, we can apply our discrimination techniques to identify

which pages refer to the same person.

• Ontology Acquisition

Our current strategy is to cluster instances of the same wordin order to identify different senses of

that word. The other possibility would be to cluster instances of multiple words in order to find the

sets of related words similar to the work done by [23], [28]. We realize that, a standard hierarchical

clustering will give us an hierarchy of word clusters that shows the different clusters to which a word

belongs at various levels. Such an hierarchy can be in fact viewed as an ontology constructed from

111

purely raw text. In future, we plan to analyze and evaluate such automatically constructed ontology

and find its applications in some standard NLP problems.

• Synonymy Identification

This is the problem of identifying words that are synonyms. If our method is used to cluster instances

of different words that are synonyms, we hope to see a clusterthat groups the instances of two different

words that use the same sense. In short, by clustering different contexts in which wordsbat andclub

are used, we should be able to get a single cluster containingall instances of these words that refer to

the sense ofstick used for hitting.

112

References

[1] G. Augustson and J. Minker. An analysis of some graph theoretical cluster techniques.ACM,

17(4):571–588, October 1970.

[2] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varadhan. SVDPACK (version 1.0) user’s guide.

Technical Report CS-93-194, University of Tennessee at Knoxville, Computer Science Department,

April 1993.

[3] M.W. Berry, S. Dumais, and G. O’Brien. Using linear algebra for intelligent information retrieval.

SIAM Review, 37(4):573–595, 1995.

[4] M.W. Berry, S. Dumais, and A. Shippy. A case study of latent semantic indexing. Technical Report

CS-95-271, University of Tennessee at Knoxville, ComputerScience Department, January 1995.

[5] E. Black. An experiment in computational discrimination of English word senses.IBM Journal of

Research and Development, 32(2):185–194, 1988.

[6] P. Brown, P. deSouza, R. Mercer, T. Watson, V. Della Pietra, and J. Lai. Class-based n-gram models of

natural language.Computational Linguistics, 18(4), 1992.

[7] R. Bruce and J. Wiebe. Word-sense disambiguation using decomposable models. InProceedings of

the 32nd Annual Meeting of the Association for Computational Linguistics, pages 139–146, 1994.

[8] S. Caraballo. Automatic acquisition of a hypernym-labeled noun hierarchy from text. InProceedings

of the 37th Annual Meeting of the Association for Computational Linguistics, pages 120–126, 1999.

[9] D. Cutting, D. Karger, J. Pedersen, and J. Tukey. Scatter/gather: A cluster-based approach to browsing

large document collections. InProceedings of the 15th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 318–329, Copenhagen, Denmark, 1992.

[10] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent se-

mantic analysis.Journal of the American Society for Information Science, 41:391–407, 1990.

[11] P. Edmonds and S. Cotton, editors.Proceedings of the Senseval–2 Workshop. Association for Compu-

tational Linguistics, Toulouse, France, 2001.

113

[12] C. Fellbaum, editor.WordNet: An electronic lexical database. MIT Press, 1998.

[13] F. Fukumoto and Y. Suzuki. Word sense disambiguation inuntagged text based on term weight learn-

ing. In Proceedings of the Ninth Conference of the European Chapterof the Association for Compu-

tational Linguistics, pages 209–216, Bergen, 1999.

[14] D. Hindle. Noun classification from predicate-argument structures. InProceedings of the 28th Meeting

of the Association for Computational Linguistics, pages 268–275, Pittsburgh, PA, 1990.

[15] http://www.altavista.com/.

[16] A. Jain, M. Murthy, and P. Flynn. Data clustering: a review. ACM Computing Surveys, 31(3):264–323,

September 1999.

[17] R. Johnson and D. Wichern.Applied Multivariate Statistical Analysis. Prentice–Hall, Inc., Upper

Saddle River, NJ, fifth edition, 2002.

[18] H.W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly,

2:83–97, 1955.

[19] T.K. Landauer, P.W. Foltz, and D. Laham. An introduction to latent semantic analysis.Discourse

Processes, 25:259–284, 1998.

[20] B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In

Proceedings of the 5th ACM SIGKDD International Conferenceon Knowledge Discovery and Data

Mining, pages 16–22, San Diego, CA, 1999.

[21] C. Leacock, G. Towell, and E. Voorhees. Corpus-based statistical sense resolution. InProceedings of

the ARPA Workshop on Human Language Technology, pages 260–265, March 1993.

[22] K.L. Lee and H.T. Ng. An empirical evaluation of knowledge sources and learning algorithms for word

sense disambiguation. InProceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 41–48, 2002.

[23] D. Lin. Automatic retrieval and clustering of similar words. InProceedings of the 17th International

Conference on Computational Linguistics and the 36th Annual Meeting of the Association for Compu-

tational Linguistics, pages 768–774, Montreal, 1998.

114

[24] L. McQuitty. Similarity analysis by reciprocal pairs for discrete and continuous data.Educational and

Psychological Measurement, 26:825–831, 1966.

[25] G.A. Miller and W.G. Charles. Contextual correlates ofsemantic similarity.Language and Cognitive

Processes, 6(1):1–28, 1991.

[26] R. Mooney. Comparative experiments on disambiguatingword senses: An illustration of the role of

bias in machine learning. InProceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 82–91, May 1996.

[27] J. Munkres. Algorithms for the assignment and transportation problems.Journal of the Society for

Industrial and Applied Mathematics, 5:32–38, 1957.

[28] P. Pantel and D. Lin. Discovering word senses from text.In Proceedings of ACM SIGKDD Conference

on Knowledge Discovery and Data Mining-2002, 2002.

[29] T. Pedersen. A decision tree of bigrams is an accurate predictor of word sense. InProceedings of

the Second Annual Meeting of the North American Chapter of the Association for Computational

Linguistics, pages 79–86, Pittsburgh, July 2001.

[30] T. Pedersen and R. Bruce. Distinguishing word senses inuntagged text. InProceedings of the Second

Conference on Empirical Methods in Natural Language Processing, pages 197–207, Providence, RI,

August 1997.

[31] T. Pedersen and R. Bruce. Knowledge lean word sense disambiguation. InProceedings of the Fifteenth

National Conference on Artificial Intelligence, pages 800–805, Madison, WI, July 1998.

[32] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. InProceedings of the

31st Annual Meeting of the Association for Computational Linguistics, pages 183–190, Columbus,

OH, 1993.

[33] W. Philips and E. Riloff. Exploiting strong syntactic heuristics and co-training to learn semantic lexi-

cons. InProceedings of the 2002 Conference on Empirical Methods in Natural Language Processing,

pages 125–132, Philadelphia, PA, 2002.

115

[34] A. Purandare. Discriminating among word senses using McQuitty’s similarity analysis. InProceedings

of the HLT-NAACL 2003 Student Research Workshop, pages 19–24, Edmonton, Alberta, Canada, May

27 - June 1 2003.

[35] A. Purandare and T. Pedersen. Word sense discrimination by clustering contexts in vector and simi-

larity spaces. InProceedings of the Conference on Computational Natural Language Learning, pages

41–48, Boston, MA, 2004.

[36] E. Riloff and J. Shepherd. A corpus-based bootstrapping algorithm for semi-automated semantic lexi-

con construction.Journal of Natural Language Engineering, 5(2):147–156, 1999.

[37] B. Roark and E. Charniak. Noun-phrase co-occurrence statistics for semi-automatic semantic lexicon

construction. InProceedings of the 17th International Conference on Computational Linguistics and

the 36th Annual Meeting of the Association for Computational Linguistics, pages 1110–1116, Mon-

treal, 1998.

[38] H. Schütze. Dimensions of meaning. InProceedings of Supercomputing ’92, pages 787–796, Min-

neapolis, MN, 1992.

[39] H. Schütze. Automatic word sense discrimination.Computational Linguistics, 24(1):97–123, 1998.

[40] Lawrence Spence, Arnold Insel, and Stephen Friedberg.Elementary Linear Algebra: A Matrix Ap-

proach. Prentice–Hall, Inc., Upper Saddle River, NJ, 2000.

[41] M. Steinbach, G. Karypis, and V. Kumar. A comparision ofdocument clustering techniques. In

Proceedings of the Workshop on Text Mining at the 6th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Boston, MA, 2000.

[42] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and its ap-

plication to image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1101–1113, November 1993.

[43] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. InProceed-

ings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages 189–196,

Cambridge, MA, 1995.

116

[44] Y. Zhao and G. Karypis. Criteria functions for documentclustering: Experiments and analysis. Tech-

nical Report 01-040, University of Minnesota, Department of Computer Science, February 2002.

[45] Y. Zhao and G. Karypis. Evaluation of hierarchical clustering algorithms for document datasets. In

Proceedings of the 11th International Conference on Information and Knowledge Management, pages

515–524, McLean, VA, 2002.

[46] Y. Zhao and G. Karypis. Hierarchical clustering algorithms for document datasets. Technical Report

03–027, University of Minnesota, Department of Computer Science, 2003.

117

