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Abstract

Word sense discrimination is the problem of identifyingfeliént contexts that refer to the same
meaning of an ambiguous word. For example, given multipletexds that include the word 'sharp’,
we would hope to discriminate between those that refer tantalléctual sharpness versus those that
refer to a cutting sharpness. Our methodology is based cstithieg contextual hypothesis of Miller and
Charles (1991), which states that "two words are semaittioalated to the extent that their contextual
representations are similar.”

This thesis presents corpus—based unsupervised solthansutomatically group together contex-
tually similar instances of a word as observed in a raw tex. d&/ not utilize any manually created or
maintained knowledge-—rich resources such as dictionahiesauri or annotated corpora. As a result,
our approach is well suited to the fluid and dynamic nature afdimeanings. It is also portable to
different domains and languages, and scales easily torlsageples of text.

The overall objective of this thesis is to study the effecvafious feature types, context represen-
tations and clustering methods on the accuracy of sensendisation. We also apply dimensionality
reduction techniques to capture conceptual similaritiesrag the contexts and don't just rely on the sur-
face forms of words in the text. We present a systematic coisgraof various discrimination techniques
proposed by Pedersen and Bruce (1997) and Schutze (1998ndNbat the first order method of Ped-
ersen and Bruce performs well with larger amounts of textilat the second order method of Schutze
is more effective with smaller data sets. We also discovédratia divisive approach is more suitable
for clustering smaller set of contexts, while the agglortieeamethod performs better on larger data.
We conducted experiments to study the effect of using varsmurces of training, and found that local
contexts of a word provide better discrimination featutemnta running text like complete newspaper
articles. We compared the performance of our knowledgeieaethod against that of a knowledge—
intense approach, and found that although the latter wasaful in conjunction with smaller datasets,
it didn’t show significant improvements with larger data.isThuggests that the features learned from
a large sample of text certainly have the potential to odigper those learned from a knowledge-rich

resource like dictionary.



1 Introduction

Most words in natural language have multiple possible nmegmi The intended meaning of an ambiguous
word can be determined by considering the context in whighused. Given an ambiguous word used in a
number of different contextsyord sense discriminatiois the process of identifying which of those contexts
refer to the same meaning of that word. This ambiguous wodguoconsideration is often referred to as the

target word

When we observe a target word used in some written text, weteal instanceof that word. The term
contextis used to refer to 2 or 3 sentences that around an instante dditget word. For example, if the
target word isShells then word sense discrimination tries to distinguish amihegnstances dghellsthat

refer toSea Shore Shellsersus those that refer Bomb Shell®r Unix Shells

Approaches to this problem are often based on the strongxtoiad hypothesis of Miller and Charles [25],
which states thattwo words are semantically related to the extent that theirtextual representations are
similar. Hence the problem of word sense discrimination reducdsatioaf determining which instances of

a given target word are used in similar contexts.

In this thesis, we take a corpus—based machine learningpagprto achieve sense discrimination. Our
algorithm first learns a set of common word patterns obseitvdgte context of a target word in a large
sample of text, and then discriminates given instancegugdustering algorithms that automatically group
together the instances using similar patterns in theireedst The word patterns selected for making such
distinctions are referred to &satures Thus, the output of a sense discrimination system shoveserhiof
given text instances such that the instances grouped imthe sluster are contextually more similar to each
other than they are to the instances grouped in the othdecdudAs the instances in the same cluster use the
target word in similar contexts, we can presume that theseédr to the same meaning of that word. Thus,
each cluster is supposed to represent a single word meawimg}) is used by all instances grouped in that

cluster.

Some may wonder about questions likghat if the contexts referring to the same meaning do notarse s
words?or What if the contexts referring to different meanings aremgshe same wordsPhese are typical
challenges faced when dealing with automatic approacheattoal language processing, and fortunately,

there is a solid body of research upon which to draw for smhsti The first problem is due gynonymy



which means there are many different words people can usfdpto the same underlying concept. For

example, consider the following two sentences:

Apple unveiled a new family of wide—screen flat panel display

Apple released their largest high resolution screen ever.

These statements announce the same news without using adyiwocommon, excepApple which is
acting as the target word. The next question that might sedais: How do you automatically determine
that ‘displays’ and ‘screen’ refer to the same thing? Could you provide an online thesaurus to look for

synonyms, or a dictionary to look for meanings of these wrds

Our belief is that, in general, any approach to analyzingitleaning of contexts that depends on manually
created and maintained resources will fail. Informatiothie real world is dynamic, with the best example

being the World Wide Web.

Every day approximately 1.5 million pages are added to the.Wehis introduces new terminology and
word usages to refer to new personalities, companies, éssiproducts, and phenomena. By contrast,
manually written dictionaries and thesauri are relativilgnant and undergo changes very slowly over a
period of years or even decades. Such resources, while béiwery high quality, can not cope with the

rapidly changing vocabulary of this dynamic world.

For example, most dictionaries do not include the neweresehshe wordapple as inApple Computers

which is in fact the most frequent senseagipleon the Web or in the news media.

The objective of this thesis is to develop a highly portalvlé easily adaptable methodology that learns word
meanings automatically from raw text. Thus, instead of gigifiormation from a dictionary or thesaurus,
we refer to an available corpus of electronic text, and théaraatically identify which words tend to occur
together very often. According to the strong contextualdilgpsis, words observed in similar contexts are
semantically related. For example, our approach will aatiically determine that the wordtisplay and
screenoften co-occur with each other or co-occur with other simil@rds like monitor, resolution, color,

vision, pixels,etc. and hence are related.

While there has been some previous work in word sense dis@ion (e.g. [38], [30], [31], [39], [13]),

by comparison it is much less than that devoted to word seisaenBdiguation. Disambiguation is distinct

2



from discrimination in at least two respects. First, the bemof possible senses a target word may have
is usually not known in discrimination, while disambiguetiis often viewed as a classification problem
where an instance of the target word is assigned to one obésilgle senses that are pre—defined. Second,
discrimination can be achieved using no knowledge outsidetext, whereas approaches to disambiguation
often rely on supervised learning in which a system learoisifmanually created examples that show the
intended sense of the target word in various contexts. Texthich the instances of a target word are
manually tagged with their correct sense is referred to aseséagged text. The creation of sense—tagged
text is time consuming and results in a knowledge acquisibiottleneck that severely limits the portability
and scalability of systems that employ it. By contrast, weetise discrimination can be achieved using
purely knowledge—lean unsupervised techniques that daatpton any knowledge intensive resources
like sense—tagged text or dictionaries. Contexts areasiedtbased on their mutual similarities which are

completely computed from the text itself.

While this thesis mainly addresses the problem of word sdisseimination, the techniques we discuss here
essentially apply to any task that requires clustering milar units of text, ranging from single sentences,
to paragraphs, to entire documents. For example, one migimtérested in automatically organizing their
personal emails or files into folders, or might wish to categponews articles collected from various online
news resources according to the topic of news. One can asatecclusters of related words (those used in
similar contexts) to automatically build a thesaurus or amlogy. In short, the topic of discriminating text
units based on their contextual (and hence conceptual)asitigis targets a broader range of applications
from information retrieval, document clustering/indexiriext categorization, synonymy identification, au-

tomatic ontology acquisition and so on.

The various contributions of this thesis to research on veamse discrimination are briefly summarized

below, and will be discussed in more detail throughout tlesith

1. We compared the discrimination techniques proposed loem®en and Bruce [30], [31] and by
Schitze [38], [39]. We observed that there are some signifidifferences in their approaches and
as yet there has not been any systematic study to determiich vesults into better discrimination.

This thesis tries to address this question via an extengperenental analysis.

2. We varied our discrimination experiments with respectdnous parameters such as feature types,



context representations, and clustering methods to deterwhich combination of settings resulted
in the most accurate results. The overall objective of thesis is to see if any particular combination

of these parameters discriminates best under all/certaidittons.

. We observed that the nature and volume of data used farréestelection and clustering is a critical
factor in the performance of discrimination. In particulanr experiments confirmed that the quality
of features (and hence discrimination) improves conshilgnaith increased amounts of data used for

feature selection.

. When only small amounts of data are available for featetection, we observed that first order

context representations that only record the informatiboua features that actually appear in the
context do not prove very effective. This is partially duetie inherent sparsity in natural language
text combined with a smaller feature set used to represertahtexts. In such case, we realized that
the technique of incorporating additional information abfieature words into contexts (as used by

the second order context representations) consideralpoiras the results.

. We observed that, sparse context representations usimglaset of features tend to have very low
similarities among most pairs of contexts. In such caseatgomerative clustering method that
rigorously compares similarities among the contexts in iayige fashion doesn't discriminate ac-

curately. On the other hand, a divisive approach to clugjeais taken by the Repeated Bisections

method seems to perform better.

. Larger amounts of data results in better features, wimcbrin allows for direct comparisons among
the contexts from their first order representations. Wecedtihat with the better quality of features,
additional information as included by the second orderexistis not necessary or in fact deteriorates

the performance by obscuring distinctions among the ctsteterring to different senses.

. With a sufficient amount of data, the successive compasisimne by the agglomerative clustering
method prove more effective than the hybrid partitionalrapph taken by the Repeated Bisections

method.

. We conducted experiments by selecting features fromypestof datasets; local data which is simply

a collection of contexts around a specific target word, anthal data like newspaper text where a
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target word may not appear in every context. Our results stdiat the global data though was used

in a very large quantity didn’t prove to be as useful as thellsmamount of local data.

. We compared the results of our knowledge—lean approathsighose obtained with a more knowledge—

intensive method that incorporated actual dictionary rivegnof feature words into contexts. We
observed that this knowledge—intensive technique onlygmtaonore accurate than the experiments
conducted with smaller data. This confirmed our hypothd®s features learned from a large text

have the potential to outperform those learned from a kndgdeich resource like a dictionary.

We have developed an open source software package SaltestClusters that is freely distributed
under the GNU Public License. All experiments reported is thesis can be re-created using the
programs and scripts provided in this package. The intdestader is encouraged to download and

examine the package frohitp://senseclusters.sourceforge.net



2 Background

Clustering methods divide a given set of objects into sommaliar of meaningful clusters, where objects

grouped into the same cluster are more similar to each dtherthey are to objects in other clusters.

Clustering is distinct from classification, in that the datis the problem of assigning an object to one of a
pre—defined set of categories. Clustering uses a datardapgroach in which objects are grouped purely

based on their mutual similarities without any knowledgexisting classes [16] [17].

The problem of clustering can be divided into the followitgps:

1. Feature Selection: identify significant attributes ofests that help to make distinctions between

various natural groupings.
2. Object Representation: convert objects to a form thaasy €0 process by the clustering algorithm.

3. Clustering: mutual similarities between objects are potad, and they are clustered based on these

values.

4. Evaluation: the resulting clusters can be comparediveltd an existing clustering that is known to

be correct.

In the following sections we will describe each step in mogtad.

We will refer to the problem of document clustering to ilkage some of the key concepts. In this problem,
a set of documents is analyzed, and those documents thab@uethe same or a similar topic should be

clustered together.

2.1 Feature Selection

Features are the distinguishing attributes of objectshbht to discriminate among the objects. The choice
of features is crucial because carefully chosen inforredatures improve discrimination among objects,
and poorly chosen noisy features can confuse the clustprogess. For example, in document clustering,

one might use the most frequently occurring words or the wardhe title of the document as features.



Though there is no single recommended strategy for featleetson that applies to all clustering problems,

there are some heuristics that can be employed that wiltdasiwiiously bad features:

1. Features that are common to all objects can be omitted.inBtance, ifcomputersoccurs in all

documents, it doesn’t help to distinguish among the diffetepics present in the documents.

2. Features that are attributes of only single object cam la¢savoided. This is because a clustering
algorithm looks for similarities among the objects, and tritate characterized by a single object
will not be shared by any other object in the given collecti®or example, ifosychologyoccurs in

only one document, it can be eliminated from the feature set.

These heuristics suggest that we put some lower and uppgreiney bounds on features. As such, we
specify the minimum and maximum number of objects that sheuhibit a certain feature in order for it be

included in our feature set.

In document clustering, an upper limit on the number of tirmegord occurs will automatically exclude
many high frequency (low information content) words litke, is, are, gfand to. In addition, very rare
words can also be excluded, since they provide a level ofldbtt is too fine grained for making topic

distinctions.

2.2 Object Representation

Once the set of features is selected, the value of each éeigtameasured for each object. Features may be

numeric or strings.

In the case of binary features, the value is 1 if the featucais; and O if it does not. These are typically
used for features that represent whether or not a partieudad occurs in a document. Numeric features
may also have integer or real values. For example, an infeg&ure could record the number of times a

particular word occurs in a document.

String valued features can be very descriptive. For exangplppose we have a feature that indicates the
origin of a document (‘"documergource’). It might have possible values sucmag/spaper, journal, book,

web,andconference-proceedingall of which describe where a document originally appeared



For string valued features, it is common practice to assignaric identifiers to these features, in the inter-
ests of computational convenience and to reduce storag@eatents. So rather than storing and manipu-
lating these strings, we identify them by numeric valueshdhatnewspapebecomes ljournal becomes

2, bookbecomes 3, and so forth.

Real valued features are useful when making more precissurezaents than integers or binary features
allow. For example, suppose instead of using single wortufes, we now have features that represent
two word sequences (bigrams) that occur in computer reldtetiments such asoftware engineering,
information technology, operating system, computer &echire,or network security A real valued feature

can represent the scores of measures of association suwd lag-tlikelihood ratio or mutual information.

Selected features can be viewed as the dimensions of adimkiinsional space in which given objects can
be represented either as vectors or as points. The fealuesuwaen define the values of vector components

or point co-ordinates.

Consider a simple 2-D space formed by the featamaputersandfinance Suppose in documentl that we
observe featureomputers3 times andinanceonce (in other words, the value of these features is 3 and 1,
respectively). Then suppose in document2 ttmhputersoccurs twice andinanceoccurs 4 times. Given
this scenario, we can view documentl as a ve@or{1;) and document2 a24{ + 45), which is shown

in Figure 1. In co-ordinate space, documentl can be seer goiht @, 1), while document2 as the point

(2,4), as shown in Figure 2.

When features are binary, objects can be represented as setsrdered lists of features that are attributes of
that object. For example, if a document includes the tdmmaall, security, recovery, virus, authentication,
and encryption then the set representation of this document will tiewall, security, recovery, virus,
authentication, encryptign Such a feature set can also be viewed as a sparse binaoy iretie feature

space that is formed by the union of all the object’s featets.s

2.3 Measuring Similarities

The objects to be clustered can be represented as vectorts posets in the feature space. The next step
is to compute their mutual similarities. There are a varatyell known measures that can be employed,

and we briefly review them below.
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2.3.1 Real-Valued Feature Space

These measures are employed with real-valued featuressgawtcan also be used with integer or binary

feature spaces.

Cosine Similarity Coefficient This measure requires that objects be represented asyjemtormeasures

their similarity by taking the cosine of the angle between t&ctors:

1!

L 1)
PIQ

whereﬁ and(Q are each feature vectors associated with a particular objec

COS(P,Q) =

Objects that have similar feature values will be closer angpace and have a smaller angle between their
vectors, which results in a higher cosine value. If the twotees are identical, cosine is 1. On the other

hand, if the vectors do not share any features then the cissthe

Object vectors are often normalized so that a vector witligelacale does not dominate the other vectors:

_ N
| v =) v} 2
i=1
- v
normalized(v) = ﬁ (3)
v

The first equation above shows the norm of the veetor

If vectors P and Q in equation 1 are normalized as shown bytiequa then

Pl=]Q|=1 (a)

Then, the cosine of the angle between the two vectors redodksir dot product:

COS(P,Q) =P - Q (5)
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Example If
1= (0.4,0,0.07,0.348, 0) (6)

and
v2=(0.32,0.1,0,0.593,0.2) (7)

then

COS(v1,v2)
0.4 x0.32+0x0.14+0.07x0+0.348 x 0.593 + 0 x 0.2

T V02 1010072103482 +0x V0322 101210+ 05932 1 0.22
~0.128 40+ 0 + 0.206364 + 0

1/0.286004 x /0.504049
0.334364

= 0.534793 x 0.709964
— 0.880638

Euclidean Distance This measure computes the spatial or straight line distbat&een two points in a

N-Dimensional space:

N

d = Dist(P,Q) = \| > (P — Qi) (8)

i=1

Then similarity between objects can be expressed in terrtteofdistance [17]:

1

Sim(P,Q) = 174

(9)

If the objects are exactly identical, distance between théhbe 0 and similarity will be 1. Distance is not

normalized and hence distance increases as the objectsfanthear from each other.

Example If P=(0.4, 0, 0.07, 0.348, 0) and Q=(0.32, 0.1, 0, 0.593,,Qt®n

Dist(P,Q) = \/(0.4 —0.32)2 4 (0 — 0.1)2 4 (0.07 — 0)2 4 (0.348 — 0.593)2 + (0 — 0.2)2

= 1/0.0064 + 0.01 + 0.0049 + 0.060025 + 0.04

11



=v0.121325
= (.348317

2.3.2 Binary-Valued Feature Space

These measures operate in binary-valued feature spacessimth@ that the objects to be clustered are rep-

resented as sets.

Match Coefficient This takes the set intersection of a pair of feature setsradiddtes how many features

are shared by the two sets. In short, it is the cardinalithefihtersection of the two feature sets.

Match(P,Q) = |P N Q| (20)

Example If P={film, story, actor, photography, theater, picture, staged Q= story, theater, perform,
actor}, then,

Match(P,Q) = |P N Q| = |{story, actor, theatre}| =3 (11)

Dice Coefficient This divides the cardinality of the intersection of the tvetssby the sum of their lengths.

This measure is normalized to tfie 1] scale by multiplying by 2.

This measure attempts to account for the size of the setg bempared, in addition to simply determining

how many features match:

2x |PNnQ)|

D?:CE(P, Q) == m

12)

Example If P={film, story, actor, photography, theater, picture, staged Q= story, theater, perform,

actor}, then,

. 2x |PNQ)|
et = e el
2x3

7+4
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11
= 0.5455

Jaccard Coefficient This divides the cardinality of the intersection of the tvaissby the cardinality of

their union. The objective of this measure is to give lowenikirity scores to long sets that have smaller

intersections.

_[PNQ)

Jaccard(P,Q) = PUQ

(13)

Example If P={film, story, actor, photography, theater, picture, sfaged Q= story, theater, perform,
actor}, then,

_[PNQ)

Jaccard(P, Q) = U0

Overlap Measure This divides the cardinality of the intersection by the rmaom of the two set lengths.
This measure accounts for the case when one of the sets iesthah the other, and gives a higher score

to smaller overlaps in such a case. The maximum value of thasnre is 1, and this value is reached if one

of the sets is a subset of the other.

[PNQ)

Overlap(P, Q) = min(|P],|Q[)

(14)

Example If P={film, story, actor, photography, theater, picture, staged Q={story, theater, perform,
actor}, then,

|PNQ)
min(|Pl,[Q))

- 3
~ min(7,4)

Overlap(P, Q) =

13



2.3.3 Similarity Matrix

The pairwise similarities between N objects are often rggmeed in a N x Nsimilarity matrix The rows
and columns of such a matrix represent the objects, and bheatuge at(i,j) indicates the similarity between

the pair of the objects at the corresponding indices.

Table 1 shows an example of a matrix representing pairwiméasities between 5 documents. Note that a

similarity matrix is always symmetric because the simijeof pair (i,j) is same as the similarity of pair (j,i).

D1 D2 D3 D4 D5
D1| 1 0 0 021 03
D2| O 1 063 042 O
D3| 0 063 1 035 0.2
D4 021 042 035 1 0
D5| 0.3 0 0.2 0 1

Table 1: Similarity Matrix for 5 Document Example

This matrix can also be viewed as a graph (Figure 3) Withiertices and% edges, wherévV N Z=Total
number of non-zero values in the similarity matrix. The i@ of this graph represent the given objects
while the edges connect pairs that have non-zero similaahyes. This results in a space efficient sparse

representation, since any pairs with a similarity of O dohmte an edge connecting them.

2.4 Dimensionality Reduction via SVD

Suppose we have a collection of 8 documents taken from campatd medical journals. Table 2 shows
a document by term matrix in which rows represent the doctsnamnd columns represent the terms (i.e.,

words or word sequences) that occur in these documents.

Each cell entry ati( j) indicates the frequency of the term represented byjtheolumn in the document

14



Figure 3: Graphical Representation of Objects

apple  blood cells ibm  data deskiop fissue  graphics  memory ganor plasma
ci,2 0 0 1 3 1 0 0 0 0 0
Mi1{ O 3 O O O 0 2 0 0 2 1
cz2y1 0 0 2 O 3 0 1 2 0 0
M2| 0 2 1 0 O 0 2 0 1 0 1
M3| 0 O 3 0 2 0 2 0 2 1 3
c3| o o o0 2 3 0 0 1 2 0 0
c4,2 0 0 1 3 2 0 1 1 0 0
¢cs61 0 0 O 2 3 4 0 2 0 0 0

Table 2: Document by Term Association Matrix

represented by th#” row. Note that the names of medical documents start with Mexthbse of the com-
puter documents start with C. The rows of the matrix can beetkas the vectors or point co-ordinates that

represent the corresponding documents in the 11-Dimealsépace formed by the selected term features.

One limitation of this representation is that it fails to eskb the problems of polysemy (a single term with

multiple meanings) and synonymy (multiple terms havingsgaime meaning) inherent in natural languages.

Notice in table 2 that, ambiguous words like apple, tissugamw are represented with a single dimension.
If the similarities between the documents are computedtbyally matching their features, this can result

in false or mistaken matching. This might cause unrelataniah@nts to receive atrtificially high similarity

15



scores, and hence be grouped together. Instead, we waistittgdish between the documents that use the

same terms but with different meanings.

Another limitation of this object representation is thagites synonymous features separate dimensions.
For example, the wordslood and plasma as shown above. In practice, we may not want to make fine
distinctions in their meanings and would want to call thewdoents similar even if one uses the tdrtood
and other useplasma In other words, we want to recognize the use of synonymshabwe do not
artificially distance two closely related documents thgtgen to choose different words to represent the

same meaning.

Fortunately, Latent Semantic Indexing (LSI) [4] [3] and &at Semantic Analysis (LSA) [10] [19] address
both polysemy and synonymy. Specifically, LSI/LSA use a digsi@nality reduction technique called Sin-
gular Value Decomposition (SVD) [2] that causes dimens@ssociated with synonyms to come together,

and differentiates between the various meanings of a polyas word.

SVD decomposes any rectangular (m x n) matrix into the prodii8 matrices:

SVD(A) = UDV’ (15)

where, matrices U and V contain the left and right singulatees of A and D is a matrix of singular values

of A [40].

Properties of U, D and V U and V represent the orthonormal basis for the column andsgamn of A,

which means,

1. The columns of U and V are orthogonal. All columns of U (anjda¥e linearly independent and the

dot product of any two columns is 0.
2. The norm of each column of U (and V) is 1.

3. U and V form the basis for span of row and column space of Agnimgy all columns of U and V are
linearly independent and all columns(rows) of A can be regméed by some linear combinations of

columns(rows) of U(V).
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035 0.09 -020 052 -0.09 040 0.02 063 0.20 -0.00 -0.02
005 -049 059 044 008 -0.09 -0.44 -0.04 -0.60 -0.02 -0.01
035 013 039 -060 031 041 -022 020 -0.39 0.00 0.03
0.08 -045 025 -0.02 0.17 0.09 083 0.05 -0.26 -0.01 0.00
0.29 -068 -045 -0.34 -031 0.02 -0.21 0.01 043 -0.02 -0.07
037 -001 -031 0.09 0.72 -048 -0.04 0.03 031 -0.00 0.08
046 0.11 -0.08 024 -001 039 005 -0.75 0.08 -0.00 -0.01
056 025 030 -0.07 -049 -052 0.14 0.07 -0.30 0.00 -0.07

Table 3: Matrix U

,kl\J
Tk —
A = U . D« .

\A

Figure 4: Reducing a Matrix to K Dimensions with SVD

The number of columns in U and V are referred to as the dimaa#ty of the column and row space of A.

D is a diagonal matrix where all entries except the diagormkaros. The diagonal values of D are called
singular values which show the significance of each dimenisidhe corresponding column and row space

of A. For further computational ease, diagonal values of®aranged in the descending order.
Tables 3, 4 and 5 show the matrices U, D and V obtained aftéonpeing SVD on matrix A (table 2).

When multiplying matrices U, D and V', the original matrix & returned. However, the goal of LSI/LSA
is not to simply recover the original matrix, but rather td gegeduced matrix that contains much the same
information, but represented in fewer dimensions (say Wis Ts achieved by selecting first k significant
singular values from matrix D or by setting all its diagonatrees beyond k+1 to 0s. This has the effect of

reducing the dimensionality of matrix A to k dimensions.

Figure 4 shows how matrices U, D and V'’ are truncated to oliteerbest approximation of matrix Ad¢)

in k dimensions where k rank(A).
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919 O 0 0 0 0 0 0O O 0 O

0O 636 O 0 0 0 0 0O O 0 O

0 0O 399 O 0 0 0 0O O 0 O

0 0 0 3.25 0 0 0 0O O 0 O

0 0 0 0 252 0 0 0O O 0 O

0 0 0 0 0 230 O 0O O 0 O

0 0 0 0 0 0 126 0 0 0 O

0 0 0 0 0 0 0O 066 0 0 O

0 0 0 0 0 0 0 0O 0 0 O

0 0 0 0 0 0 0 0O 0 0 O

0 0 0 0 0 0 0 0O O 0 O

Table 4: Matrix D

0.21 0.08 -0.04 028 0.04 086 -005 -0.05 -0.31 -0.12 0.03
0.04 -037 057 039 023 -004 0.26 -0.02 0.03 025 0.44
0.11 -0.39 -0.27r -0.32 -0.30 0.06 0.17 0.15 -0.41 0.58 0.07
037 0.15 0.12 -0.12 0.39 -0.17 -0.13 0.71 -0.31 -0.12 0.03
0.63 -0.01 -045 052 -0.09 -0.26 0.08 -0.06 0.21 0.08 -0.02
049 0.27 050 -0.32 -045 0.13 0.02 -001 031 0.12 -0.03
0.09 -051 020 005 -0.05 0.02 0.29 0.08 -0.04 -0.31 -071
0.25 011 015 -0.12 0.02 -032 0.05 -0.59 -0.62 -0.23 0.07
0.28 -0.23 -0.14 -045 0.64 0.17 -004 -0.32 031 0.12 -0.03
0.04 -026 019 0.17v -0.06 -0.07r -0.87 -0.10 -0.07 0.22 -0.20
0.11 -04v -0.12 -0.18 -0.27 0.03 -0.18 0.09 0.12 -0.58 0.50

Table 5: Matrix V
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0.05 -0.49

0.35 0.13
0.08 -0.45
0.29 -0.68
0.37 -0.01
046 0.11

0.56 0.25

Table 6: Truncated Matrix U

919 O
0 6.36

Table 7: Truncated Matrix D

Tables 6, 7 and 8 show the matrices U, D and V truncated aftammeg the top two dimensions. On

multiplying the truncated forms of U, D and V’, we gdf, as shown in table 9.

Note that most of the zeros in the original matrix (table 2)mow smoothed to some non-zero values. Thus,
SVD has a smoothing effect which assigns some non-zero y&tuteatures that do not actually occur in
the documents but occur in similar documents. In Table 2téhmblood does not occur in the document
M3 but after SVD (see table 9), this term gets a higher scai®.(This is because document M3 contains
medical terms likgplasmaandcells and all other documents that contain these terms alsodetliood
The same is true for the terapplethat doesn't actually appear in C5 but still gets a high safrk.22
after SVD. This shows how SVD can improve the similarity scboetween texts that may use different

terminology for the same concepts.

The reduced matrix no longer represents the actual wordottar in a text, but rather dimensions that
suggest underlying concepts. This has the effect of cangea word level feature space into a concept
level semantic space which allows computations based oceptual meanings of terms rather than their

surface forms.
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apple

blood

cells

Table 8: Truncated Matrix V

ibm

0.21
0.04
0.11
0.37
0.63
0.49
0.09
0.25
0.28
0.04
0.11

data

0.08
-0.37
-0.39
0.15
-0.01
0.27
-0.51
0.11
-0.23
-0.26
-0.47

desktop

tissue

graphics

memory ganor

plasma

C1
M1
C2
M2
M3
C3
C4
C5

0.73
0.00
0.76
0.00
0.21
0.73
0.96
1.22

0.00
1.18
0.00
1.08
1.70
0.15
0.00
0.00

0.11
1.27
0.01
1.19
1.97
0.39
0.16
0.00

1.25
0.00
1.32
0.00
0.35
1.25
1.65
2.11

2.00
0.33
2.04
0.49
1.73
2.17
2.65
3.21

1.72
0.00
1.83
0.00
0.18
1.68
2.27
2.95

0.01
1.63
0.00
1.52
2.45
0.35
0.03
0.00

0.86
0.00
0.91
0.00
0.18
0.85
1.13
1.46

0.77
0.85
0.72
0.86
1.74
0.98
1.02
1.08

0.00
0.84
0.00
0.77
1.24
0.17
0.00
0.00

0.09
151
0.00
1.41
2.32
0.41
0.13
0.00

Table 9: Document by Term Matrix after SVD
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2.5 Clustering Algorithms

Clustering algorithms can be divided into three main grolgased on the methodology they empléii-
erarchical methodgerform a series of merging or splitting operations to @eddisters, whilgartitional
techniquesavoid pairwise operations and divide the set of objectsangiven number of clusters, and then

iteratively refine those clusterklybrid methodsncorporate ideas from both.

Clustering algorithms can also be classified into three maiegories based on the object representation they
use. Vector spacemethods directly cluster feature vectors, wihlmilarity basedmethods convert feature
vectors into a similarity matrix where each cell containsnailarity measure for a pair of feature vectors.
Graph basedmethods represent objects as graphs, and use graph pantti®chniques to cluster them.
This thesis only concerns vector and similarity methods,nmi graph based approaches. The interested

reader is encouraged to consult [1], [42] for more informmathbout the latter.

In all these methods, the number of clusters to be createdittzar be explicitly specified or automatically
derived by the algorithm. We take the former approach inttesis, although automatically determining

the optimal number of clusters is an important area of futuwek.

In this thesis we limit our discussion tward clusteringalgorithms that assign each object to at most one
cluster. There are also soft (fuzzy) clustering method$tfidt determine the degree of membership of each

object in each cluster, but those are not included here.

The following sections describe several widely used hadniaal and partitional methods, and shows that

they can often be applied in either vector or similarity spac

2.5.1 Hierarchical

Hierarchical methods can be divided into two class&gglomerativemethods merge a pair of clusters at

each iteration, whilelivisivemethods split a cluster into two at iteration.

Agglomerative methods start with each object in a sepailatder, so that if there are N objects, the al-
gorithm begins with N initial clusters. The most similar siers are merged during each iteration until the
desired number of clusters are obtained. Divisive methaaik w the opposite fashion and initially start

with all objects in a single cluster. During each iteratiartluster containing the least similar objects is split
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d1 d2 d3 da d5 dé
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Figure 5: Example of Dendogram

into two. This continues until the required number of clustre formed.

The clusterings found by agglomerative and divisive meshzah be represented in a tree structure known
as adendogranthat shows the clusters as found at each iteration of theitlign At the top-most level,
the dendogram tree shows a single cluster containing atictdyjwhile at the bottom-most level, there are
as many leaf nodes as there are objects to be clustered. mtlegiam tree can be used to retrospectively
examine the progress of the clustering algorithm, and may $hsights into where clustering could be

stopped to achieve optimal results.

Figure 5 shows an example of a dendogram tree where therdated af 6 objects being clustereddl, d2,
d3, d4, d5, d§. Objects d4 and d5 are merged in the first iteration (readréeeih Figure 5 in bottom-up
fashion). In the 2nd iteration of clustering, object d3 isrgeel with the cluster containing (d4, d5). Then,
objects d1 and d2 are clustered in the next iteration to fosmngle cluster (d1, d2). After that, clusters (d1,

d2) and (d3, d4, d5) are merged. Finally, object d6 joins taster (d1, d2, d3, d4, d5).

The decision as to which clusters should be split or mergeathgluan iteration is dictated by a criteria
function [44], which determines which clusters are mosteast similar. The most widely used criteria

functions for hierarchical methods are single link, contplenk and average link.

In the agglomerative approach, the single link criteriaad®es the pair of clusters with the minimum dis-

tance between their nearest members for merging, whilegdhmplete link criteria selects the pair with the
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Figure 6: Single, Complete and Average Link Clustering

minimum distance between their farthest members. The gedmk method merges the pair of clusters
that has the minimum average pairwise distance betweendhgbers. Note that objects with the minimum

distance are considered to be the most similar.

In the divisive approach, the single link criteria choodes¢luster with the maximum distance between its
nearest members for splitting while the complete link mdtbelects the cluster with the maximum distance
between its farthest members. The average link method $ipditcluster with the maximum average pairwise

distance between all pairs of its members.

Figure 6 shows how the single, complete and average linkrizriselect the pair of clusters for merging
and a cluster for splitting. In the single link diagram, ntitat the two objects that are closest to each other
are used for determining the amount of similarity betweentéo clusters, while in complete link it is the
furthest pair of objects. Average link clustering measutesdistance between the centroids of the two

clusters to determine similarity.
Each of the two possible object representations can be gagia hierarchical clustering.

In vector space, there are N initial vectors for the N objee#eh representing its own cluster. During each

iteration, the clusters to be merged or split are selectedrding to the chosen criteria function. Note that
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the distance between a pair of vectors is determined by ile &etween them, while similarity is measured

by the cosine of this angle.

In similarity space, the input to the clustering algoritheraisimilarity matrix that represents the pair-wise
similarities between the given objects. Thus, N objectsrepeesented in a N x N dimensional similarity
matrix, whose rows and columns represent the initial N ehgst During each iteration, the clusters to be
merged or split are chosen according to the selected erifigniction. After merging, the similarity matrix

is updated to show the similarities between the newly meohester and all other clusters in the collection

according to the selected criteria function.

2.5.2 Partitional

Partitional algorithms divide the entire set of objectiat pre-determined number of clusters (say K)
without going through a series of pair-wise merging or donssteps. Unlike hierarchical methods, the
clusters created during subsequent iterations are néédeiathose in the previous or next iterations. These
methods are preferred on larger datasets due to their lawvepuatational requirements ([9], [20]), as they
do not require an exhaustive series of pairwise comparibk@she agglomerative methods do. The best

known example of a partitional algorithm is the K-means teusg algorithm.
Partitional methods can be carried out on objects that @resented in vector or similarity space.

In vector space, the centroid of any cluster is the averagsl tiie vectors that belong to that cluster. K-
means initially selects K random vectors to serve as theaiestof the initial K clusters. It then assigns
every other vector to one of the K clusters whose centroiddsest to that vector. After all vectors are
assigned, the cluster centroids are re-computed by averadji the vectors assigned to the same cluster.
This repeats until convergence, that is until no vector gkarnts cluster across iterations, or in other words,

when the centroids stabilize.

In similarity space, each object can be seen as a point irespah that the distance between any two points
is a function of their similarity. Initially, each point isiits own cluster and represents the center of that
cluster. During the first iteration, K-means selects K rangmints as K centers of the initial K clusters and

assigns every other point to one of these K clusters thabsest to that point. Once all points are assigned

to the clusters, the cluster centers are re-computed bygakie average of all points in the cluster. This is
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repeated until convergence.

2.5.3 Hybrid Methods

It is generally believed that the quality of clustering bytfinal algorithms is inferior to that of the ag-
glomerative methods. However, recent studies by [46], bl shown that these conclusions were based
on limited experiments conducted with smaller data setdfzetdvith larger data sets, partitional algorithms

are not only faster but also lead to better results.

In particular Zhao and Karypis recommend a hybrid approawwk as Repeated Bisections. This over-
comes the main weakness of partitional methods, which igtability in clustering solutions due to the
choice of the initial random centroids. Repeated bisestioethod starts with a single cluster of all objects.
At each iteration, a cluster whose bisection optimizes tiwsen criteria function is selected for bisection.
The cluster is bisected using the standard K-means methbdiwR, while the criteria function maximizes
the similarity between each object and the centroid of thetel to which it is assigned [45]. As such this

is a hybrid method that combines hierarchical divisive apph with partitional K-means method.

2.6 Evaluation

There are three techniques for evaluating the performahatustering methods; external, internal and

relative evaluation [16].

In this thesis, we focus on external evaluation metrics dieéérmine clustering accuracy by comparing the
solution against gold standard data for which true clasdiio of the objects is available. This method
of evaluation allows one to estimate in advance how the tslanethodology will perform when used on
real-life data whose true classification is unknown. Whiemal evaluation requires knowledge of the true
classification of objects, this information is not used at paint before evaluation, it is held out from the

clustering or feature selection process.

Internal evaluation techniques are purely based on thagsdike intra-cluster and inter-cluster similarity
and standard deviation among the clusters that do not us&rawledge about the existing categories.

Relative evaluation techniques compare the solutiondeniday two different clustering methods. In this
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science arts sports finangeR-Total
C1 2 0 3 10 15
Cc2 1 1 7 1 10
C3 6 1 1 2 10
C4 2 15 1 2 20
C-Total 11 15 12 15 55

Table 10: Confusion Matrix before Column Re-ordering

thesis we focus on external evaluation, and will not furtiscuss internal or relative evaluation techniques.

2.6.1 Column Reordering Method

Our external evaluation technique was suggested by [30kdliires that we build a cluster by class dis-
tribution matrix which is known as eonfusion matrix.The rows of this matrix represent the discovered
clusters while columns represent the actual classes initka gold standard. A cell value at (i,j) indicates
the number of objects in the cluster represented by‘thew that belong to the class represented byjthe

column.

Figure 10 is an example of a cluster by sense matrix which shbes distribution of 55 objects (i.e., the
value in the last row and last column) in 4 clusters (C1, C2, C8). The first row indicates that there
are a total of 4 categories (science, arts, sports, finanagdld standard data. The last column shows the
row marginal totals, which are the total number of objecteach cluster. The last row shows the column
marginals, which are the total number of objects belongmmgach category in gold standard. Each cell
value at (i,j) indicates the number of objects in iHecluster that belong to the category represented by the

4" column according to gold standard.

Accuracy is then computed by re-ordering the columns of th&usion matrix so that the diagonal sum

is maximized. With each re-ordering, we indeed assign adh®el to each cluster and then choose the
mapping that results into the maximum number of objects dir tihue classes. The diagonal sum for each
possible mapping scheme shows the number of objects indbaiect classes if the clusters are labeled

according to that mapping scheme. Table 11 shows the sasterchy sense distribution matrix shown in
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finance sports science anR-Total
C1 10 3 2 0 15
Cc2 1 7 1 1 10
C3 2 1 6 1 10
C4 2 1 2 15 20
C-Total 15 12 11 17 55

Table 11: Confusion Matrix after Column Re-ordering

table 10 after reordering columns to get the maximal clastass mapping. Specifically, the matrix in table
11 shows that the maximal labeling scheme labels cluster i€ilfimance cluster C2 withsports C3 with
scienceand C4 witharts. In other words, cluster C1 represents fimancecategory, cluster C2 represents

the sportscategory and so on...

The problem of finding the maximally accurate mapping of €lkbels to clusters is equivalent to the
Assignment Problem in Operations Research or the Maxinzte Matching problem in Graph Theory
[18] [27].

2.6.2 Measuring Precision and Recall

Once the confusion matrix is created, the accuracy of dinstean be computed using precision and recall.

Precision is defined as the ratio of the number of objects air #torrect classes divided by the number
of objects attempted by the clustering algorithm. Rementih&tr, an algorithm might not cluster all the
given objects, especially the objects that do not share eatufe with any other object will be put into
singleton clusters. These are counted as the un-clustéjedt® during evaluation. Thus, the humber of
objects attempted by the algorithm (denominator in prenisis obtained by subtracting the un-clustered
objects from the total number of objects. The number of dbjeorrectly clustered (numerator) is the sum
of the diagonal values of the column-reordered confusiotrireorresponding to the maximal mapping

arrangement.

Thus, if we refer back to table 11, we can see that the diagamalis 38 (10 + 7 + 6 + 15), which indicates

that 38 objects are in their correct categories. The totaibrr of objects in the matrix is 55, which is the
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number of objects the algorithm placed in clusters. Giveséhvalues, precision is computed as follows:

precision = % = 0.69 (16)

Recall is computed by dividing the number of objects colyeciustered by the total number of objects.
Thus, recall is always less than or equal to the precisionevals the denominator of recall will always be

greater than or equal to that of the precision, having theesaumerator.

For the confusion matrix in 11, let's assume that there weotshof 57 objects and our clustering algorithm
clustered only 55 of them. This means that there were 2 abjbet our clustering algorithm was unable
to place in a cluster. The total number of objects corredigtered remains 38, and the total number of

objects that were given to the algorithm is 57. Recall is ttemputed as follows:

38
ll=—=0.67 17
reca - 17)

Precision and recall provide two separate measures ofecdngtperformance. The F-measure is a single
value that combines these two by taking two times the harowo@an of precision and recall. Given the

previous values of precision and recall, the F-measurerigpated as follows:

precision X recall

F=2x —
precision + recall
Foox 0.69 x 0.67
0.69 4+ 0.67
F=2x0.34
F=10.68

2.6.3 Entropy and Purity

Entropy and purity are two fairly standard external evatrmameasures that are used in clustering. We

employ both of these after carrying out the column re—ormgemethod described above.

Entropy takes into account the distribution of objects ichegluster belonging to each class in gold standard.
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A cluster made up predominantly of objects from a singlescladl have low entropy, while a cluster made

up of a mixture of objects from multiple classes will havehi@gentropy.

The following formula computes the entropy of a clustér made up of a total of., objects. n’ is the
number of objects in cluste?, that belong to thé'” class, whilet is the total number of classes in the gold

standard.

1 nt nt
EC,) = —— L log =~ 18
() logt Z g i Ny (18)

Sn=n (19)

Thus, for the confusion table in 11, the value of n is 55, argd. iThen the entropy of each cluster can be

computed as follows:

1 10 10 3 3 2 2
E(Ch) :_@[(1_5 X10g1—5)+(1—5 X10g1—5)+(1—5 X10g1—5)] (20)
= —1.661 x (—0.1174 —0.1398 — 0.1167) (21)
— 0.6211 (22)

1.3 1 7 7
E(Cy) = _Z[(E x log 1—0) + (E x log 1—0)] (23)
— 1.661 x (—0.3 — 0.1084) (24)
— 0.6784 (25)
1. 2 2 2 1 6 6

E(C3) :_Z[(I_O X10g1—0)+(m xlog1—0)+(ﬁ Xlogﬁ)] (26)
— 1.661 x (—0.1398 — 0.2 — 0.1331) @7)
— 0.7855 (28)

29



E(Ch) = S xlog =) + (= x log =) + (22 x log 22)] (29)

— 1190 20’ " '20 207 " 20 20
= —1.661 x (—0.2 — 0.0651 — 0.0937) (30)
— 0.596 (31)

The total entropy of the clustering solution is computedadijrtg the sum of the entropies of the individual

clusters weighted by their sizes:

k
Ny
Etotal = ;E(Cr) (32)

r=1

From equations 22, 25, 28 and 31, we get the total entropyustaaling solution in table 11 as follows:

[(15 x 0.6211) + (10 x 0.6784) + (10 x 0.7855) + (20 x 0.596)]

55
9.3165 + 6.784 + 7.855 + 11.92

95

= 0.6523

A perfect solution where each object is placed into its airaass will cause:’. = n,. for each cluster,

leading toE(C,) = 0 for all r, and hencé’_total = 0.

Purity tells the degree to which a cluster represents thesalaed by the maximum number of its member
objects.

P(Cy) = ima:n(njn) (33)

Ny

We obtain the following purity values for the confusion ndatn 11:

10
P(Cy) = 35 = 0.6667

7
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6

P(C3) = 15 = 0.6
1
P(Cy) = 2—2 =0.75

The purity of entire solution is then computed as as the surtteedndividual cluster’s purity.

k
Ty
Ptotal = WP(OT) (34)

r=1

From equation 34, we find the purity of the solution in tabled be:

104746415
Propal = — ;5 T 691 (35)

The best solution, wheré. = n,. for each cluster, will lead t&(C,.) = 1 for all r, hence, will haveP_total =
1.

Note that purity is not equivalent to precision as descrikdve, since precision requires that each class
label is assigned to a unique cluster, while purity allowdtie same class label assigned to multiple clusters.
In fact, purity can be seen as a simple form of precision, @/leach cluster is simply assumed to represent

the class to which most of its member objects belong.
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3 Methodology

In this thesis, we use an unsupervised clustering approasaivte the problem of word sense discrimination.
Instances of a target ambiguous word are observed in a rpusof text. Our goal is then to identify which
instances refer to the same meaning of that word. As hypatieb®y [25], instances referring to the same
meaning will often use similar contextual words. Thus, weahse discrimination becomes the task of
grouping together the instances of the target word that se€ in similar contexts. The objects that we
cluster are the contexts around the instances of a target avat the features that we use to represent these
contexts are the words or word sequences frequently olisarntbe context of that word. Here, we assume

that the scope of the contexts is limited to 1-2 sentencasdran instance of the target word.

The following sections discuss the specific methodologyunfsmlution.

3.1 Identifying Features from Raw Text

The instances of a target word whose contexts are to be dsteake up théest data This is sometimes
also referred to as thevaluation data We want to represent the test instances by their most salren
discriminating features. There are a number of decisioasrttust be made in doing this. First, from what

data will we identify features. Second, how will we actuaditract the features from that data.

3.1.1 Feature Selection from Test or Training

The features used to represent test instances may be delemte that same test data, or those features
may be obtained from a separate held—out corpus that isedfer as theéraining data The decision as to

whether to use the same data or held—out data for featur@céintn depends on a number of factors.

If the test data is fairly large, and if there is no separad@ing data readily available, then it may make
sense to simply identify the features from the test datas Ehfairly common in clustering applications in

general.

In our experiments, we use a separate training data, paftie¢ause we assume that the size of the test data

will not be always sufficient to select a good set of featuddso, the use of held—out training data allows
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us to try different variations in the sources of trainingpes, and see their effect on the performance of

discrimination on the same test set.

For example, suppose we apply our discrimination methgyoto the problem of email—classification,
where we seek to group emails according to their topic. If wpleyed held—out training data, we could
cluster new emails (say for year 2004) by selecting featinoes old emails (say from year 2003) in the hope

to achieve similar organization. Or, if we didn’t have enbggnails to provide sufficient training, we could

use some other larger email corpora such as the Enron Emais&ahttp://www-2.cs.cmu.edu/ enron/) or
newsgroup corpora such as the 20-NewsGroups (http://p@sgil.mit.edu/u/j/jrennie/publibtml/20Newsgroups/)
or the archives available from Google Groups (http://gegpogle.com/). On the other hand, if we want

to cluster all of our emails and we have a sufficiently largehivwe, then we could select features from the
same data that is to be clustered. Both options are reasyreaid depend on the particular goals of the

application.

3.1.2 Local versus Global Training

We call training datdarget-specificor local if every context in the training data includes the targetdvor
Note that local training data corresponds to what is knowlexisal sample datén the word sense disam-
biguation literature, where the corpus provides a samplesafies for a particular word. In general, if a
large number of contexts that include a target word are @viai] then there are fairly clear advantages to

using that for training data (as we will show in our experitaénesults).

The other variation that we tried in our experiments was #® aidarge amount of running text, such as
newspaper corpora (e.g., the Associated Press Worldstoeadew York Times) that consists of many
complete articles and not just contexts around a specifietavord. We call this method of using running

text for feature selection agobal training

In local training each context consists of a sentence orgpariparagraph that contains a single instance of
the target word, while in global training a context might bpamagraph or entire article without respect to
the particular words that occur therein. Thus, in globahtray it is nearly certain that there will be many

contexts that do not include a particular target word.

As such a global training data provides general informadibout word usages, including those outside the
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contexts of a specific target word. We will show that this caovgle a reasonably good level of performance,

despite the fact that the training data is not specific to aquéar word.

When using global training, all the data preprocessing amth some of the feature selection steps may
be performed only once and then these preprocessed reanltsecused with various target words or for
various kinds of experiments. Also, global training cogare often easier to obtain than finding a large

number of instances of a specific target word as is requirdddaf training.

However, a possible disadvantage of global training isittaduld introduce a large amount of noise in the
feature set. This is because the general behavior and ubageds outside the contexts of a specific target
word may not be always useful to discriminate among the seofsa particular word. However, the hope
is that the broad coverage of global training will provideiéidnal information not present in local training

that will offset this disadvantage.

One of our objectives in this thesis is to study the effechefmature of the training data on discrimination
accuracy. For example, using the same test data for traigpiigting all of the available data into training
and test partitions, using some pre-classified trainingngtes for clustering the new set of test instances,

or using target-specific as well as global training data.

3.2 Types of Features

The features that we use to represent the context of thet tamayel in the test data are all surface level
lexical features. These are word—based features that cabdszved directly in whatever text is serving
as the source of features (be it the same test data or helttaouhg data). Specifically, we represent the

context in which a target word occurs using unigrams, bigramd co-occurrences.

3.2.1 Unigrams

Unigrams are single words that occur in the same context eagatiget word. Our use of unigrams is
motivated by the success bag—of-words feature setwhich are made up of all the words found in a
sample of training data. Despite its simplicity, this faatget has proven successful in text classification

and word sense disambiguation [26].
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Obviously there are many words in text that do not providenmfation about meaning of the target word,
in particular, function words like conjunctions, articlesd prepositions. As such we exclude these from
our unigram feature set by specifying these words (whicti@tee ignored) in a&top list Thus, in general
we hope that unigram features will primarily be content veofidoun, verbs, adjectives, and adverbs) that

capture the meaning of a text.

In local training, where every training instance includes target word, unigrams are the content words that
occur above a given level of frequency in the context of tihgaiaword. If the training data is global, where
every instance does not include a target word, unigramsharmbst frequently occurring content words in

that corpus.

In our local training experiments we apply a frequency dutb® by removing unigrams that appear only

once in the training data.

Table 12 shows the top 20 most frequent unigrams (and theguéncy of occurrence) as found in the
training data for the verberve which is a part of the SENSEVAL-2 corpus. (Note that in thisdis we
will use the diamond symbat > to mark the end of a word.) We observe that some of the unigpamiain
to leadership positions and food, both of which relatesgovein some way. This shows how unigram

features can in fact be useful for differentiating among miregs.

Table 13 shows the top 20 most frequent unigrams collected &l the SENSEVAL-2 training data (which
includesserveplus 71 other words). Here we treat the SENSEVAL-2 trainiagpas as a source of global
training and select unigram features without regard to amiiqular target word. As such the list of unigrams
is fairly generic, and does not seem to suggest any pantiou@nings or topics. Hence, we do not employ

unigram features when dealing with global training data.

3.2.2 Bigrams

Bigrams are typically defined as a consecutive sequenceocofvtwds. In this thesis, we extend that defini-

tion in two ways.

First, we allow a given window or number of words between the words that make up the bigram. Thus,

our bigram features are pairs of words that occur in a givelerowithin some distance from each other in
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Table 12: Local Unigrams for verb Serve

WORD< > freq

presiderk:> 194
hot< > 165
chairmarc> 154
time<> 150

company.> 147

sauce > 128
add<> 127
chief<> 122
cream<> 119

executivec> 107
million<> 102
old<> 102
minutes< > 99

chopped: > 97

purpose> 96
butter > 95
directo > 88
board > 86
officer<> 84

36



Table 13: Unigram Features, Global Training

WORD<> freq

time<> 1419

people<> 1022

way< > 931
day< > 892
work< > 824
old<> 745
still<> 712

head<> 700

long<> 687
life<> 622
marn< > 594
house<> 592
world<> 557
right<> 554

million<> 552

market > 548

home<> 519
come<> 518
same<> 515
high<> 509
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Table 14: Bigrams, Window Size of 2

WORD1<>WORD2< > nll nlp npl
TWINKLE <>TWINKLE<> 1 2 1
TWINKLE <>LITTLE <> 1 2 1
LITTLE <>STAR<> 1 1 1

the training corpus. We specify a window of size five, meatinad there could be at most three intervening

words between the first and the second word that make up arhigra

Second, we use the stop list to remove any bigrams that iectibast one stop word. This is referred to an

OR stop list, and is intended to restrict bigrams to beingengaof two content words.

Suppose we identify and count all the bigram features inghevfing well known rhyme, where stop words

are shown in lower case:

TWINKLE TWINKLE LITTLE STAR
how i WONDER what you are

up above the WORLD so HIGH

like a DIAMOND in the SKY

If we use a window size of two, and thereby consider bigramsetéwo consecutive words, the resulting

bigrams from this sample of text are shown in Table 14.

The numbers following the bigrams in Table 14 are (in ordérg joint frequency nl1l of the bigram, the
marginal frequency nlp of WORD1, and the marginal frequenxlyof WORD?2. The joint frequency tells
how many times the bigram occurs in the corpus, while the imarg1p tells how many bigrams there are
that begin with WORD1. The marginal npl indicates how mayais end with WORD?2. In other words,
nlp is the sum of all the n11 values of all bigrams whose firstvi@ WORD1, while npl is the sum of all

the n11 values of all bigrams whose second word is WORD2.

Note that this is the complete list of bigram features forghmple above, since other observed two word
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Table 15: Bigrams, Window Size of 5

WORD1<>WORD2< > nll nlp npl

TWINKLE <>LITTLE <> 2 5
TWINKLE <>STAR<> 2
WORLD<>HIGH<> 1
STAR<>WONDER<> 1
DIAMOND <>SKY <> 1
LITTLE <>WONDER< > 1
LITTLE <>STAR<> 1
HIGH<>DIAMOND <> 1

1

2
3
1
2
1
2
3
1
TWINKLE <>TWINKLE <> 1

ga » N N P P B O

sequences (such asw iori WONDER are not considered since they include one or two stop words.

Expanding the window size has a fairly dramatic effect. Bameple, if we use a window of size 5 (and
thereby allow up to 3 intervening words between WORD1 and WW@R we obtain the set of bigrams

shown in Table 15.

Note that we do not allow bigrams that span across the boi@sdaifra context. This means that bigrams in
which the two constituent words belong to different cordeste not counted. Thus far in our example we
have been considering the entire Twinkle, Twinkle rhymedmhe context. However, if we treat each line
as a single context and do not allow bigrams to cross linégsbtvoundaries, we will get a different set of

bigrams as shown in Table 16.

Notice that the bigramsITTLE<>WONDER, STAR>WONDERandHIGH<>DIAMONDdo not appear

here as their component words appear on separate lined) afgiqiow treated as separate contexts.

It should be noted that while we don'’t require bigrams to heseautive words, we do require them to retain
their original ordering since this often has a strong immacimeaning. For examplsharp<>razor and
razor<>sharpare distinct bigrams and may refer to different underlyingamings. Bigram features allow

us to retain those kinds of distinctions. Our use of bigrasmmdtivated by their recent success as features
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Table 16: Bigrams, Window Size of 5, Each Line a Context

WORD1<>WORD2< > nll nlp npl
TWINKLE <>LITTLE <> 2 5
TWINKLE <>STAR<>
WORLD<>HIGH<>
TWINKLE <>TWINKLE <>
DIAMOND <>SKY <>
LITTLE <>STAR<>

2
3
1
1
1
3

e = N

5
1
5
1
1

Table 17: Contingency Table for Bigrams

WORD2 -WORD2| RSUM
WORD1 nll nl2 nlp
-WORD1 n21 n22 n2p
CSUM npl np2 npp

in word sense disambiguation [29].

Measures of Association for Bigrams Each bigram and its associated counts of the form
WORDXk >WORDZ:>n11 nlp npl

can be converted into a 2 by 2 contingency table as shown ileTab Here, nll, n12, n21 and n22 are

referred to as the observed frequencies while nlp, n2p,ngflare the marginal frequencies.

What follow are the specific descriptions of what each cethia table represents.

e nl1ll = number of times a bigram WORER+WORD?2 is observed

e n12 = number of bigrams in which WORDL1 is at the first positiohn WORD2 is not at the second

position
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e n21 = number of bigrams in which WORD?2 is at the second pasitiat WORDL1 is not at the first

position

e N22 = number of bigrams in which WORD1 is not at the first posittnd WORD2 is not at the second

position
¢ nlp =total number of bigrams in which WORD1 is at the first posi(n11+n12)
e npl = total number of bigrams in which WORD?2 is at the secorsitjpm (n11+n21)
e N2p = total number of bigrams in which WORDL1 is not at the figifion (n21+n22)

e np2 =total number of bigrams in which WORD?2 is not at the sdqaosition(n22+n12)

npp = total number of bigrams in the sample = sum of n11 scdrab leigrams

Given the marginal frequencies nlp, npl, n2p, np2, we camatst the expected values for these values

based on the assumption that the two words are occurringeiodfpus independently as follows:

m11 = expected value of n11 = (n1p*npl/npp)

m12 = expected value of n12 = (n1p*np2/npp)

m21 = expected value of n21 = (n2p*np1/npp)

m22 = expected value of n22 = (n2p*np2/npp)

Having computed all the marginal, observed and expectegiémrcies, we then compute the log—likelihood
ratio for each bigram as follows:
’I’Lij

G? = 2Znij x log

ij

(36)

mij

This measures the deviation between the observed and egpeetuencies, and if a pair of words shows
a high deviation between these values, the words are shotn be independent. A formal test of signif-

icance can be performed by selecting a p-value (we normakyQu05) and seeing if the resulting score is
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Table 18: Contingency Table for Bigram TWINKI<sE>STAR

STAR -STAR RSUM
TWINKLE nl1=2 nl2=nlp-n11=3 nlp=>5
-TWINKLE | n21=np1-n11=1 n22=np2-n12=2n2p=npp-nlip=3

CSUM npl1=3 np2=npp-npl=5 npp=8

greater than the corresponding critical value (3.841)s Thiical value comes from the chi-square distribu-
tion, based on 1 degree of freedom. Then, any bigrams whgséKkelihood score is greater than this value
will be considered as a feature (and those below will be di. Those bigrams with scores above the
critical value are considered to be strongly associated,aa@ not occurring together due to some chance

occurrence.
From the example in Table 16, we show the computation of tyelikelihood ratio for the pair
TWINKLE<>STAR<>25 3

Note that the value of npp is 8, which can be determined by sagmll of the nl1l values. With this
information, we can construct a complete 2 x 2 contingenbiettor bigram TWINKLE<>STAR as shown

in Table 18.

Given these observed values, the expected values can matstias follows:

mll = (nlpxnpl/npp) =3 %5/8 = 1.875
ml12 = (nlp xnp2/npp) =5 5/8 = 3.125
m21 = (n2p xnpl/npp) = 3% 3/8 =1.125
( )

m22 = (n2p x np2/npp) = 5 x 3/8 = 1.875
Then the log—likelihood ration for the bigram TWINKIE>STAR can be computed as follows:
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J
ﬂlj

(;22: 22{:7%j x]og

ij

g
1
11 12 21 22
=2 x [(nll % log %) + (n12 * log %) + (n21  log —;21) + (n22 x log —;22)]
1
)+ (1% log ——=) + (2 * log

1.125 1.875 )
= 0.0358

=2 x[(2xlog

) + (3 xlog

2
1.875 3.125

Note that this value falls well below our critical value 0B31, so we might discard that as a feature.
However, note that this example is artificially small, ugpalr value of npp is much larger (in the thousands

or perhaps even millions).

Similarly, we compute the log—likelihood ratio for all otHdgrams found in Table 16 and show those results

in Table 19.

Table 19: Bigram Log—Likelihood Scores

WORD1<>WORD2<> score
WORLD<>HIGH<> 6.0283
DIAMOND <>SKY <> 6.0283
TWINKLE <>LITTLE <> 2.2672
LITTLE <>STAR<> 2.2092
TWINKLE <>TWINKLE <> 1.0243
TWINKLE <>STAR< > 0.0358

Notice that on arranging the bigrams in the descending afidreir log—likelihood ratio, we get a differ-
ent ordering than if we ordered them according to their fezmy count, n11. For instance, bigrams like
WORLD<>HIGH or DIAMOND< >SKYget higher log-likelihood ratios despite their smallermsu On
the other hand, bigramWINKLE< >STARgets the least score in spite of its higher n11 count. Thigis b
cause the log-likelihood ratio doesn’t only consider thetjsfequency n11, but it compares all the observed

frequencies with their corresponding expected values.
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Figure 7: Graphical Representation of Bigrams

Graphical Models of Bigrams Figure 7 shows a graphical representation of bigrams thatfes to as

a bigram graph. Each vertex of this graph represents a woddaa edge joining vertex X to Y represents
the bigram X >Y. The edges are weighted and the weights may indicate ditieefrequency counts or
statistical scores of association between the correspgmuhir of words. In this figure, we use the simple
joint frequency counts of bigrams as weights. Notice thaesdX<>Y and Y<>X could have different

scores as they represent different bigrams.

For each bigram of the forVORD Xk >WORDZ2:>n11 n1p npkhown in Table 16, the marginal frequency
of WORD1 (n1p) is the same as the out—degree of WORDL1 in theegmonding bigram graph shown in
Figure 7. Recall that this is the sum of n11 counts of all biggehaving WORDL1 at the first position.

Similarly, the marginal frequency of WORD?2 (np1) is the saamsedhe in—degree of WORD?2 in the bigram

graph. This indicates the sum of n11 counts of all bigramsttage WORD2 at the second position.

Vector Space Model of Bigrams The bigrams as shown in figure 7 are internally stored in aacadicy
matrix, which is formatted as shown in Table 20. We refer g #s a bigram matrix. The rows of a
bigram matrix represent the words that have a non-zero egrte@d in the corresponding bigram graph,
while columns represent the words that have a non—zero gmede The cell value at (i,j) in the bigram
graph shows the score associated with the bigram WQRIVORD], since th&*" row represents WORDi

and thej*" column represents WORD]. Thus, eathrow of the bigram matrix can be viewed as a bigram
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Table 20: Bigram Matrix

LITTLE STAR HIGH TWINKLE SKY
TWINKLE 2 2 0 1 0
WORLD 0 0 1 0 0
DIAMOND 0 0 0 0 1
LITTLE 0 1 0 0 0

Table 21: Bigram Statistics Matrix

LITTLE STAR HIGH TWINKLE SKY
TWINKLE | 2.2672 0.0358 0 1.0243 0
WORLD 0 0 6.0283 0 0
DIAMOND 0 0 0 0 6.0283
LITTLE 0 2.2092 0 0 0

vector of the WORDi whosg"" index shows the score of the bigram WORDiIWORD]. Since we use
frequency counts of bigrams in this example, the bigramorsare represented in an integer—valued vector

space whose dimensions are made up of the words representad the columns.

Table 21 shows the matrix for the bigrams from Table 16 baselb@-likelihood scores rather than fre-
guency counts. A bigram matrix that uses such statistiaalescis referred to as a bigram statistics matrix.

Each row of a bigram statistics matrix can be viewed as a véttreal-valued word space.

3.2.3 Co-Occurrences

Co—occurrences are similar to bigram features, excepthiegtare not ordered. Two words are called co-
occurrences of each other if they occur within some speaifiedow of each other without regard to their
order. In our experiments, we set this window size to 5, dligvat most three intervening words between
the two words to call them as co-occurrences. While for Ioigrave say that WORRi>WORD) occurs n

times and WORD >WORDi occurs m times, for co—occurrences we simply say thaRMBi and WORD)
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Table 22: Bigrams, Window Size of 3, each Line as Context

WORD1<>WORD2<> nll nlp npl
SELLS<>SEA<> 1 3
SELLS<>SHELLS<>
SEA<>SHELLS<>

SEA<>SHORE<>

SHELLS<>SELLS<>
SELLS<>SALES<>
SALES<>SMELL<>

1
1 3 2
1 2 2
1 2 1
1 1 1
1 3 1
1 1 1

co-occur (n+m) times. Like bigrams, we do not allow co—ooenices that contain one or two stop words.

Consider the following example, where stop words are indatan lower case:

she SELLS SEA SHELLS on the SEA SHORE
SHELLS she SELLS on SALES SMELL

Suppose, we first find the possible bigrams in this text usingralow of size 3, and where each line
represents a distinct context (meaning that bigrams maycrusts line/context boundaries). The set of

bigrams that results is shown in Table 22.

Now, suppose, we are simply interested in finding which woasccur regardless of their order. Using the
same window of 3 and ignoring pairs that span across the/tioetexts, we find the set of co-occurrence

pairs as shown in Table 23.

Each word pair WORD4 >WORD2 as shown in the co-occurrence list (figure 23) is foddwby three
values nl11, nlp and npl, which have similar but slightlyedéht interpretations here. nll shows the
total number of times the two words co-occur together ireeipe of the ordering. Notice thaQHELLS
follows SELLSonce on line 1 in the given text, whilSELLSfollows SHELLSonce on line2. Hence, the
co-occurrence file lists the n11 score of the BHELLS<>SELLSas 2 unlike the bigram file that shows
two separate orderings &HELLS>SELLSandSELLSc>SHELLSeach with score of 1. The nlp count
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Table 23: Co—occurrences, Window Size of 3, each Line aseXbnt

WORDI1<>WORD2<> nil nlp npl
SELLS<>SEA<> 1 4
SELLS<>SHELLS<> 2 4
SEA<>SHELLS<> 1 3
SEA<>SHORE< > 1 3

1 4

1 2

SELLS<>SALES<>
SALES<>SMELL<>

R N P W W W

of a co-occurrence pair WORRI>WORD2 shows the sum of the n11 counts of all pairs in which WQRD
appears at either position. For example, the nlp count ofl B&Ais 3 as it appears in total 3 pairs each

with the n11 score of 1. Similarly, the npl count is the sumliofvard pairs in which WORD?2 appears.

Measures of Association for Co-occurrence Each co-occurrence pair of the fofMORDk >WORDZ >n11
nlp nplis converted into a 2 x 2 contingency table similar to the dres in the previous section (Table
17). However, the observed and marginal frequencies hayltlgl different meanings for co-occurrences,

as explained below.

nll = number of times WORD1 and WORD2 co-occur in either order

e N12 = number of word pairs in which WORD1 occurs but WORD?2 dies
e N21 = number of word pairs in which WORD?2 occurs but WORD1 dies
e n22 = number of word pairs in which neither WORD21 nor WORD2wsc
e nlp = total number of pairs in which WORD1 occurs. (n11+n12)

e npl = total number of pairs in which WORD?2 occurs. (n11+n21)

e N2p = total number of pairs in which WORD1 doesn't occur. (f1242)

e Np2 = total number of pairs in which WORD2 doesn't occur. (f222)
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Table 24: Co—Occurrence Log-Likelihood Scores

WORD1<>WORD2<>  score
SALES<>SMELL<> 2.9690
SEA<>SHORE< > 1.9225
SELLS<>SEA<> 1.2429
SEA<>SHELLS<> 0.1965
SHELLS<>SELLS<> 0.1965
SELLS<>SALES<> 0.0580

e npp = total number of word pairs in the sample = sum of n11 scofall co-occurrence pairs.

Here, we only consider the pairs of words that occur withireain distance or window from each other.
The expected frequencies have the same definitions as th&yr éggrams, and the actual calculation of
log—likelihood is carried out the same way. Table 24 showddb—likelihood ratios that we result from the

co—occurrences listed in Table 23.

Graphical Model of Co-occurrences Figure 8 shows the graphical representation of the co-oecces

in what we call a co-occurrence graph. Similar to the bigraaply, each vertex of this graph represents a
word. However, the edges of the co-occurrence graph areantéd as the order of words that co-occur is
not important. An edge connecting vertices X and Y simplhjidates that words X and Y co-occur within
the specified distance from each other. In this graph, we hesdéog—likelihood ratios between the word

pairs as the weights on the edges, rather than their freguumts.

Notice here that, the nlp or npl frequency of any word is saniis degree in the undirected co-occurrence

graph, which indicates the total number of pairs in whichwloed occurs regardless of its position.

In word sense discrimination, we are often interested in@mirrences of a target word. As can be noticed
in the co-occurrence graph (figure 8), co-occurrences ofticpkar word are all the words connected to it

in the co—occurrence graph. For exam@elELLS, SALES, SE¥e co—occurrences &ELLS
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Figure 8: Graphical Representation of Co-occurrences

Table 25: Co-occurrence Matrix

SELLS SEA SHELLS SHORE SALES SMELL

SELLS 0 1.243 0.197 0.058 0 0
SEA 1.243 0 0.197 1.923 0 0
SHELLS| 0.197 0.197 0 0 0 0
SHORE 0 1.923 0 0 0 0
SALES 0.058 0 0 0 0 2.97
SMELL 0 0 0 0 2.97 0

Vector Space Model of Co-occurrences We store co-occurrences in a matrix called a co-occurrence
matrix, whose rows and columns represent the words and rteike indicate the co-occurrence scores of
the corresponding word pairs.

Each word encountered in the text is assigned a unique indéxepresents the row and column of the
co-occurrence matrix at that index. The matrix entries thleow the co-occurrence score between the
corresponding pair of words. Table 25 shows the same cormsme pairs as in figure 8 in the matrix

format. As the same word represents the row/column at argxiadd as the value at (i,j) is same as that at

(i,1), the co-occurrence matrix is always square and symmet
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Kth Order Co-Occurrences Co-occurrences as defined thus far can be seen as the wardstldérectly

connected to each other in a word co—occurrence graph. &m aibrds, the words that are co—occurrences
of each other are joined by a path of length 1, or are at a distahone edge away from each other. In this
section, we extend that view of co-occurrences and defiffeOrder Co-occurrences as words that are K

edges away from each other in the co-occurrence graph.

[39] introduced the idea of second order co-occurrencesoadsithat co-occur with the co-occurrences of a
target word. We observed that these are the words that aredtig connected to the target word via one of
its co-occurrences. In other words, second order co-oecaes are two edges (with one intermediate node)

away from the target word.

In Figure 8, SHELLSandSHOREare second order co-occurrences of each other since thegramected via
exactly one wordSEA Assuming thaSELLSs a target word her&HOREandSMELLwill then become

the second order co-occurrences of the weEd LS

Similarly, we define thd(*" order co-occurrences of a target word as those words thabarescted to the
target word by exactly K edges (or K-1 intermediate nodes)gdneral, we call any two words connected
by K edges as th&*" order co-occurrences of each other. For example, in theccorence graph shown
in Figure 8, wordsSHOREand SALESare called the third order co-occurrences, as the shorédistgon-
necting them has length 3 (with two intermediate nodes). il&ilyy, SHOREand SMELL are forth order

co-occurrences as they are four edges away from each other.

Given this framework, co-occurrences as defined in the baggrof this section can be seen as the first-order

co-occurrences as those are connected by exactly one edge.

3.3 Context Representations

After selecting features from the training data, we turnaitention to the test data that contains the instances
of the target word to be clustered. Each instance in the &atig converted into a form that indicates which
of the features occur (or not). In particular, the contertuad each instance of the target word in the test
data is represented as a vector of features called a corgetdry We refer to the operation of identifying
which features occur in the test instancdesgure matchingsince we take a list of features found in training

data, and check if they occur in the test instances by peifigrian exact string match.
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In this section, we discuss two types of context represientst first order context vectors as used by [30]

and second order context vectors as introduced by [39].

3.3.1 First-Order Context Vectors

A first order context vector indicates which of the featurgedaly occur in the context of the test instance.
If the feature values are binary, a context vector simplycaigs which features occur in the context. If
the features are non-binary, a context vector indicatesitineber of times each feature is matched in the

context.

The text below was created by randomly selecting web seaslits for the query "sells NEAR shells”
using the Alta-Vista search engine [15]. The NEAR directigguests any pages that contasells and
shellswithin 10 positions of each other be returned. As such thia dantains occurrences of these words

in both possible orders, which allows us to effectivelysthate the nature of co—occurrences.

SHERRY SELLS CANDLES OF SEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARE SEA SHELLS, | AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDORA-
TIONS

SHE SELLS SEA SHELLS EARRINGS AT SHERRY’S SHELL STORE

Unigram Matching We perform exact feature matching rather than fuzzy matghamd hence it is re-
quired that a feature word be matched literally in the cantdxa test instance. Also note that we do not
attempt to stem (reducing words to their base forms) or nlizmaither the training or test data, so a feature

word does not even match with its own morphological variamtie context.

In the Alta-Vista sample of text, the unigré&HELLwill be matched total 2 times on lines 6 and 7, as shown

by bold entries below.
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SHERRY SELLS CANDLES OF SEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS ARE SEA SHELLS, | AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEAHELL CANDLES, CHRISTMAS ORNAMENTS AND DECORA-
TIONS

SHE SELLS SEA SHELLS EARRINGS AT SHERBME_L STORE

However, the unigrafHELLSs matched a total of 8 times as shown below.

SHERRY SELLS CANDLES OF SEAELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY SGHELLS

SHELLS SHE SELLS ARE SERHELLS, | AM SURE

IF SHE SELLSSHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THESHELLS OUGHT TO BE THE SEA SHOREHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS [ANDORA-
TIONS

SHE SELLS SEAHELLS EARRINGS AT SHERRY'S STORE

Thus, the unigranSHELL does not match the context that has its plural f@HELLSand vice-a-versa.
Similarly, the verb featur&ELLwill not match its different forms like&SELLSor SOLD.

Our hypothesis is that dimensionality reduction techniglilee SVD when performed on a large sample of
text will tend to smooth irregularities and variations indaiage usage, including the different morphological

forms of words.

Bigram Matching A bigram of the formWORD X >WORDZXselected using a window of size n (say n=5)
is said to be matched in the text only if WORD1 is followed byraist n-2 words (here 3 words if n=5) in

the same context before WORD2 appears.

52



Suppose we do not use any window (count only consecutive waird) while selecting a bigram feature
SEA<>SHELLS Then, the above sample text will have 3 matches of bigiA< >SHELLSwhereSEA
is immediately followed bySHELLSas shown below.

SHERRY SELLS CANDLES GEA SHELLS BY THE SEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS AREEA SHELLS, | AM SURE

IF SHE SELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS AINDORA-
TIONS

SHE SELLSEA SHELLS EARRINGS AT SHERRY'S SHELL STORE

Note that our exact matching does not match the sequeBéeSHORE SHELLGh line 5, as we require
the wordsSEAandSHELL Sto occur consecutively when windowing is not used. We alsoataconsider

the sequenc&EA SHELLon line 6 as it is not an exact match of the feat8eA SHELLSThe sequence
SHELLS ON THE SEAnN line 4 is discarded for same reas@EAand SHELLSIn this sequence do not

occur in the same order as expected by the fesg&a SHELL®o0r do they appear consecutively.

Suppose that we allow a window of 5 i.e. at most 3 interveniogds, then the bigrarBELLS<>SHELLS

will match the sample text 5 times as shown below.

SHERRYSELLS CANDLES OF SESHELLS BY THE SEA SHORE

SHE ALSGSELLS BRIDAL JEWELRY OBHELLS

SHELLS SHESELLS ARE SEASHELLS, | AM SURE

IF SHESELLS SHELLS ON THE SEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THE SEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS ANDORA-
TIONS

SHESELLS SEASHELLS EARRINGS AT SHERRY’S SHELL STORE
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Co-occurrence Matching A co-occurrence feature selected using a window size of re(heb) is said

to be matched in a context if there are at most n-2 (here 3)sMoetiveen that feature word and the target
word in the context. While matching, it doesn’t matter whesth feature word follows or precedes the target
word. Thus, a co-occurrence feature that appears withimemgvindow from the target word in the training
data is said to be matched in the context of a test instanteyifpears within the same distance from the

target word in that context.

For example, in the context of the woBHELLS word SEAappears a total of 6 times within a window of

size 5, as shown by the bold face entries below.

SHERRY SELLS CANDLES GEA SHELLS BY THESEA SHORE

SHE ALSO SELLS BRIDAL JEWELRY OF SHELLS

SHELLS SHE SELLS AREEA SHELLS, | AM SURE

IF SHE SELLS SHELLS ON THEEA SHORE, WHICH SHE DOES

THEN THE SHELLS OUGHT TO BE THEEA SHORE SHELLS

WE SPECIALIZE IN SEA SHELL CANDLES, CHRISTMAS ORNAMENTS [AINDORA-
TIONS

SHE SELLSEA SHELLS EARRINGS AT SHERRY’S SHELL STORE

Note that on line 3 there are two instanceS6fELLS andSEAIs within 5 positions of both these instances.
However, we require that there is only single instance otéinget word in each context. Even if there are
multiple occurrences of the same word in a context, we trat ane of them as the target word. This is
because we do not make any assumption that multiple ingarf@eword in the same context always refer
to the same meaning. Its possible to find the same word useddifitrent meanings in the same context.
For exampleSHELLS SHE SELLS ARE SEA SHELLS AND NOT FIREWORK SHHELar8er to identify

a correct instance of the target word, we mark it with an XM lige < head > SHELLS < /head >.

On the similar lines, on line S5EAwill match only if the second instance &HELLSis marked as the
head/target word, as there are four words betwi&ieAand the first instance @HELLSwhich goes beyond

our window size of 5 that allows for only 3 intervening words.
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Table 26: Unigram Features, First Order Example

WORD< >
SEA<>
GUNS<>
SHORE<>
SYSTEM<>
CORALS<>
EXECUTE<>
EXPLODE<>
COMMANDS< >
FILE<>
STOREK >
FIREWORK< >
UNIX <>

Building Actual First Order Contexts  Suppose we selected the unigram features shown in Tabler6 fr

some hypothetical training data.

Further suppose that our test data consists of following texere the beginning and end of each context is
marked with XML < context > tags, and the target word is marked with thé.ead > tag. For simplifying
further explanation, each context appearing on lireegiven an identifielC; as shown in the beginning of

each line :

Cl: < context > a < head > SHELL < /head > SCRIPT is a FILE of UNIX COM-
MANDS< /context >

C2: < context > if she SELLS SHELLS BY the SHORE, then i am SURE she SELLS SEA
SHORE SHELLS and not the FIREWORKeead > SHELLS < /head >< [context >

C3: < context > STORE the CSH COMMANDS in@head > SHELL < /head > and
INVOKE CSH to EXECUTE these COMMANRSY context >

C4: < context > FIREWORK< head > SHELLS < /head > EXPLODE onto the USU-
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Table 27: First Order Context Vectors

SEA GUNS SHORE SYSTEM CORALS EXECUTE EXPLODE COMMANDS FILE TSRE FIREWORK  UNIX
Cil| 0 0 0 0 0 0 0 1 1 0 0 1
C2| 1 0 2 0 0 0 0 0 0 0 1 0
C3| 0 0 0 0 0 1 0 2 0 1 0 0
C4| 0 0 0 0 0 0 1 0 0 0 1 0
C5| 0 1 0 0 0 0 0 0 0 0 0 0
C6| 0 0 0 0 1 0 0 0 0 0 0 0
Cr| 1 0 1 0 0 0 0 0 0 1 0 0

ALLY DARK SCREENS in a VARIETY of COLORED STREAK&ntext >

C5: < context > ARTILLERY GUNS were USED to FIRE HIGHLY EXPLOSK/Eead >
SHELLS < /head >< [context >

C6: < context > we OFFER the BEST COLLECTION afhead > SHELLS < /head >
and CORALS at VERY REASONABLE PRIGE&ontext >

C7: < context > the LARGEST SEA head > SHELL < /head > STORE on the SHORE

< /context >

For each of the above contexts, we construct a first ordeegxbwméctor that indicates which features occur
in that context. Table 27 shows the first order context vedimr each of the above contexts. Specifically,
each line of Table 27 shows a vector representing the cotitekbppears on the corresponding line in the
above text, where the selected features become the dimerdithese vectors. A cell value at (i,j) indicates
the number of times a feature represented byjtheolumn is found matched in the context represented by

the i row.
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Table 28: Unigram Features, Second Order Example

WORD< >
SEA<>
GUNS<>
SYSTEM<>
COMMANDS< >
STORE<>

UNIX <>

3.3.2 Second-Order Context Vectors

Second order context vectors indirectly represent theexbmif a test instance by an average of the word
vectors of features that match in the context. First, a bigoa co—occurrence matrix is constructed to
show the frequency counts or statistical scores of assmcibetween all pairs of words that form bigrams
or co-occurrences in the training data. Thus, each worddrrtining data is represented by a bigram or
co-occurrence vector that shows how often (or how stronigjiig) associated with each of the other words
in the training corpus. These vectors are referred tieatire vector®r justword vectors The context of
each test instance is then represented by the average eatlté vectors of words that make up that context

(where low frequency and stop words are excluded).
Suppose Table 28 shows the features we selected from thingraiata.

And suppose Table 29 shows feature vectors for each of thesiacluded in this feature set. Specifically,
each row shows a co-occurrence vector for the corresporidatgre word shown in column 1. The values
in the matrix are the log—likelihood ratio between the cgpanding pairs of words. For this example, these
values are obtained from the Associated Press Worldstregous. The words representing the dimensions
(columns) in this table are a randomly selected subset afinigram features found in this corpus. We do

not show all the dimensions for this corpus as it consistsafenthan 100,000 columns!

Having created the feature vectors for each of the selee®iife word in the training data, we turn our

attention to building a second order context vector for @astance in the test data.
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Table 29: Example Feature Word Vectors

SELLS WATER MACHINE COMPUTERS DOS BOMBS
SEA 18.5533 3324.9846 0 0 0 8.7399
GUNS 224537 287.4839 85880.9155 48.1596 0 699.5669
SYSTEM 0 6858.3415 1.7013 14.5221 116.1319 0
COMMANDS 0 0 0 31.1924 90.2884 0
STORE 134.5102 205.5469 0 62.3774 0 0
UNIX 0 0 116.6942 109.1895 0 0

Table 30: Feature Vectors of UNIX, COMMANDS and SYSTEM

SELLS WATER MACHINE COMPUTERS DOS BOMBS

SYSTEM 0 6858.3415 1.7013 14,5221 116.1319 0
COMMANDS 0 0 0 31.1924 90.2884 0
UNIX 0 0 116.6942 109.1895 0 0

Suppose we want to create a second order context vectorefamgtance below:

< context > the C< head > SHELL < head > OFFERS a UNIX USER many DIF-
FERENT COMMANDS. on any UNIX SYSTEM, ONLINE DOCUMENTATIONese COM-
MANDS is AVAILABLE in MAN PAGES. context >

As before, stop words are written in lower case letters, dhget word is marked ir. head > tags, and the

< context > tags indicate the beginning and end of the context.

Note that in this context, we observe features UNIX and COMIDS twice and feature SYSTEM once.
Other features like SEA, GUNS, STORE do not appear. We olitaifieature vectors for the words UNIX,
COMMANDS and SYSTEM from the co-occurrence matrix in tabe 2

Then we can compute the second order context vector as ®llawereW ORD stands for the vector

associated with a given word, and the numerator represeatsum of all the vectors associated with the
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words in the context:

(2% UNIX) + (2x COMMANDS) + (SY STEM)
5

2% (0 6858.3415 1.7013 14.5221 116.13190) +2%(0 0 0 31.1924 90.2884 0)+ (0 0 116.6942 109.1895 0 0)
N 5

_ (0 137167 3.4026 20.0442 232.264 0)+ (0 0 0 623848 180.577 0)+ (0 0 116.6942 109.1895 0 0)
N 5

(0 13716.7 120.097 200.618 412.841 0)

5

= (0 2743.34 24.0194 40.1236 82.5682 0)

Note that a second order context vector indirectly reprisseontexts in terms of the words that co-occur
with the contextual words rather than with the target wortie Thtuition behind this indirection is that a

co-occurrence or bigram vector of a word is assumed to oaphe meaning of that word in terms of the
words that most frequently co-occur with it, and by averggdime word vectors of contextual words, we try
to capture the meaning of the entire context in terms of thenimgs of its contextual words. In short, we try
to represent the meaning of a context as an average mearting wbrds that appear in the context. As our
method is knowledge—lean, we try to find the meanings of featwrds found in any context by identifying

the words that most commonly co-occur with them in the tragrdata.

3.4 Singular Value Decomposition

Matrices as shown in Tables 20, 25 or 27 can be reduced in dior@by performing Singular Value
Decomposition (SVD). Specifically, we use the single vedtanczos method (las2) as implemented in
SVDPACKC [2]. We selected this particular algorithm basedtle results reported by [2] that show its

overall performance efficiency over other methods.

The program las2 expects the input matrix to be in the Hare#ting format (see [2]) along with the values
of various program options specified separately in a paemfiés lap2. Various constants for the program
are specified at compilation time via the header file las2ahthé discussion that follows we describe the

various parameters in files lap2 and las2.h, and how we detvtlaes in our experiments.

59



3.4.1 Setting parameters in lap2

The parameter file lap2 allows the user to specify the valfisaribus parameters while running las2. The

format of the lap2 file is as follows:
name lanmax maxprs endl endr vectors kappa
where all parameter values are listed on a single line andegr@rated by blank space.

The parameters of most relevance to us are the 2nd and thé.&8rdanmax and maxprs. Other than
these two (lanmax and maxprs), all others are set to theauttefalues as given in the original lap2 file
distributed with SVDPACKC< name > specifies the name of the matrix and we set it to a descriptive

string that indicates the data source and specific settisged 10 create the matrix.

< maxprs > specifies the number of singular triplets to be discovereth&y. In our experiments, we set
maxprs tomin(K, COLS/RFwhere K = 300 and RF = 10. K and RF are both referred to as thectiedu
factors. The value of K specifies the number of significantatigions to be retained by SVD while RF
specifies the scaling factor by which the original dimensiare reduced. For example, if the matrix prior
to SVD has 1200 columns, then we reduce it down to min(3000/12) = min(300,120) = 120 dimensions.
On the other hand, if the matrix has 12,000 columns, we retainthe top 300 ones (as min(300, 12000/10)
= min(300,1200) = 300).

Apart from < maxprs >, we also set the: lanmax > parameter that specifies the number of iterations
for las2. As suggested by the SVDPACKC authors, we set th{8 tanaxprs) which is said to be enough
to compute< maxprs > singular values. The value &f lanmax > has to be at least as high as the
< mazprs > parameter and the values aflanmax > and< maxprs > can not exceed the total number
of columns in the original matrix. Hence, we setanmaz > to min(3*maxprs, #cols) to make sure that it

is always less than or equal to the number of columns (#cblkeagiven matrix.

3.4.2 Setting constants in las2.h

The header file las2.h sets the values of various progranmariado las2.
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e NMAX - Specifies the maximum possible number of columns inrttagrix given to las2. By default,
las2.h will have NMAX = 3000 that allows maximum 3000 columnshe matrix. As this default is
too small for most of our experiments, we set NMAX to 10,00 tlows up to 10,000 features. In
case of our experiments with large (global) training date,ewen set this constant to something as
high as 200,000. In short, this value is expected to be higifaer the number of columns in the matrix

prior to SVD.

e NZMAX - Specifies the maximum possible number of non-zera@alin the matrix. Default settings
in las2.h have NZMAX = 100000. Assuming that our local 10,800,000 matrix is approximately
1% dense, we set NZMAX to 1,000,000 (10,000 x 10,000 / 100)r €periments with large data
used NZMAX of about 5,000,000.

e LMTNW - This specifies the maximum total memory to be allodaty las2. Default value of
LMTNW in las2.h is 600000. Specifically, LMTNW is expectedde at least as high as (6*NMAX +
4*NMAX + 1 + NMAX*NMAX). Again by Assuming that our 10,000 x 1@00 matrix is 1% dense,
we set LMTNW to 10,010,000. The global experiments with g/\arge training used LMTNW =
2,000,100,000.

3.5 Determining Number of Clusters to Create

A significant challenge in any clustering task is to deteertiow many clusters should be created for the
given data. While discriminating senses of a word, we facendlas question: how many senses does a
word actually have? As we use a knowledge—lean approachWwerean not simply refer to an electronic

dictionary to find out this answer. The following discussidescribes the various strategies we used to

overcome this challenge in our experiments.

3.5.1 Similarity Score Cutoff

The parameter, number of clusters to be created, specifegmintting condition to a clustering algorithm
that will continue to cluster until the required number afsters are formed. Recall that an agglomerative

algorithm starts with N initial clusters (for N test inst@s¢ and merges the most similar pair of clusters
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at each iteration. A divisive algorithm starts with a singlester and splits a cluster with most dissimilar

elements in each iteration.

Thus, if no stopping conditions are specified, an agglorveratigorithm will continue merging until a

single cluster is formed, while a divisive algorithm williinue splitting until the given N instances are
divided into N clusters. In our first experiments (descrilzsdExperiment 1 in the Experimental Results
section), we used a strategy that sets the number of clustbesdiscovered to 1 for agglomerative and to N
(where N = number of test instances) for a divisive methodenllie used another stopping rule to terminate

clustering before these conditions are met.

Specifically, we set threshold values on similarity scongshghat an agglomerative algorithm stops if no
pair of clusters has similarity above the specified cutoff amlivisive algorithm stops if no two members of
any cluster have similarity below the specified cutoff. Aggkrative methods stop due to a lack of enough
similarity between any pair of clusters for merging, whilelisisive method stops due to lack of enough
dissimilarity within any cluster for splitting. However,enrealized that determining the appropriate score
at which to stop clustering is a challenging problem in itsxavght and there is no single score value that

finds suitable number of clusters for any dataset.

3.5.2 Filtering Low Frequency Senses

After realizing the difficulty in setting a suitable scoretaffi for clustering, we decided to pre—process the
data such that it includes instances of only the top N moguiat senses of any word. Thus, irrespective of
the number of senses a word has in a dictionary, we selectgdhenN most frequent senses. This allowed
us to create exactly the same number of clusters as the wasdseWe refer to this method of filtering data
based on the rank of the word senses emlt based sense-filtein brief, we count the number of instances
for each word sense in the evaluation data (i.e., test datxenthe true classification of an instance is
known), then rank the word senses in the descending ordbesétfrequencies and finally select the top N

most frequent senses by removing the instances that usertbessranking below N.

The limitation of the rank based sense-filter is that a setketlue of N could be too high for some of
the words that have fewer popular senses. This poses arabthbenge of discriminating very rare senses

of such words. Here, we assume that the given test data igesegpative sample of the general language
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usage and the percentage frequency of any word sense ramaie@®r less same in any other representative
sample. Thus, popular senses are supposed to be the onaetbaed by a large number of instances while
the rare senses are those used by very few instances in greayigluation sample. Clustering the instances
of rare word senses is assumed to be more challenging bettersewill be fewer instances of such rare

senses in any both training and test data. This results éwterffeatures characterizing such senses, which

in turn leads to very sparse context representations ofhigtarices that use these rare senses.

Since the rank based sense-filter poses the challenge otlingl some very rare word senses, in our later
experiments we selected the most frequent senses basednernpsocentage frequency cutoffs instead of
rankings. In other words, we selected only those sensesathaitlustrated by at least M% of the total

instances in the evaluation data. M is typically set to soomaler greater than 5 or 10.

For example, assuming that the evaluation data has at l@@sbthl instances, by setting M to 10, we make
sure that there are at least 10 instances of each sense.ypaisftpreprocessing based on the percentage
frequencies of word senses is referred to aptiteent based sense-filtéfhus, from a given test data with
total N instances, we remove the instances which are taggedive senses that in turn are used by less
than NM/100 instances. Hence, we know that every word sengeifiltered test data has at least NM/100
instances. We then create some arbitrarily large numbdusfers that is greater than expected number of

senses for any word.

For example, assuming that most words have approximatélgeiises, we create 10 clusters. Our hypoth-
esis here is that, a good discrimination experiment wilbeatically create approximately same number of
clusters as the true senses and the extra clusters willinorggy few instances. In the ideal case, we expect
that each extra cluster will have a single instance. Thuscaweignore the singleton clusters (containing
only one instance) without loosing many instances. Therathgation that we tried was to ignore the clus-
ters that contain less than NM/100 instances. This is becassknow that our M-percent filter has only

retained the senses with at least NM/100 instances.

As such we expect each of the discovered clusters to havasatNe#/100 instances. In practice, however,
the distribution of instances in the discovered clustergiger exactly same as that of the true senses in the
data. Hence, after applying a M% filter, we usually ignorediusters containing less than some P instances,

where P is slightly less than NM/100.
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Figure 9: Graphical Visualization of Clusters

3.5.3 Cluster Visualizations

Both the approaches described above require knowledge afith sense tags of the test instances prior to
clustering and hence can’t be applied to the problem of etirgy when this knowledge is not available. In
other words, the kind of preprocessing proposed above mastw frequency of word senses is only useful
for experimental purposes when we know the true distribubiosenses in the given data. Hence, we believe
that the strategy we employ for determining the correct nema clusters should not use any knowledge

beyond what is available in raw text.

There are tools available such as GCLUTO that produce a map¥isualization of discovered clusters
that helps to determine which clusters are significant. Mecifically, the 3D mountain view of clusters
as created by GCLUTO shows each cluster by a mountain in a 8@eplThe distance between any two
mountains is a inverse function of their inter-cluster $amily while the height of a mountain is directly
proportional to the intra-cluster similarity. Thus, onerasily notice that the short clusters are the extra

ones and in fact can be viewed as the parts of one of the majar|tclusters that is closest to them.

Figure 9 illustrates the case when the gold-standard ev@atudata has fewer senses than the actual number
of clusters discovered. In this case, we requested 10 cduste the mountain view reveals that there are

only 5 to 7 significant clusters and hence the data should therlsivided into around 6 clusters.

The problem with this method is that it requires manual ictipas of cluster results and is not fully auto-
matic. Hence, the problem of automatically discoveringdbgect number of clusters without using any

knowledge outside the given raw corpus remains a challdraente plan to address in our future work.
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Table 31: Cluster by Sense Confusion Matrix

SERVE10 SERVE12 SERVE2 SERVEG6
Co: 401 23 42 9
ClL: 16 5 9 4
C2: 3 1 8 4
C3: 21 8 23 9
C4. 147 66 75 15
C5: 8 0 2 1
Cé6: 0 2 1 2
C7: 0 3 8 3
C8: 9 16 12 7
Co: 67 393 161 124

3.6 Evaluation

The performance of a clustering algorithm can be evaluasugugold—standard data in which instances
being clustered are manually attached with their true stagge Some of the instances can have multiple
sense tags attached by same or different human taggerd) mieians that they use more than one sense of
the target word. However, we always used hard clusteringiirerperiments and hence do not classify any
instance into more than one clusters. Since this poses leighalin evaluating such instances with multiple
answers, we remove all but the most frequently used sereehatt to those instances that have multiple
possible correct answers. In other words, every instanoarievaluation data is tagged with only one sense

which is the most frequent of all the senses attached to it.

The output of a clustering algorithm shows clusters of givstances such that all the instances that use the
same meaning of the target word are grouped together in the shuster. If we know the true sense tags of
the instances belonging to various clusters, we can canstreluster by sense distribution matrix as shown
in Table 31 that shows the number of instances of each sergadastandard in each of the discovered

clusters.
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The Table 31 suggests that we discovered total 10 clustpsegented by the rows) but there were only 4
senses (shown by the columns) in the gold—standard. Edcfakes at (i,j) indicates the number of instances
with true sense; as represented by th&" column that are members of the clust&ras represented by the
it" row. In general, we will build a M x N confusion matrix if we @& M clusters and there are total N

senses in the gold—standard.

We then try to determine which sense of the target word is mlosely represented by each cluster. A
cluster containing maximum number of instances using aif{peense is assumed to represent that sense.
Thus, the problem of determining what sense each clusteesepts turns out to be a typical assignment
problem of mapping sense tags to clusters. We assume one pensluster and hence do not make any

attempt to attach multiple senses to a single cluster orgdesgense to multiple clusters.

3.6.1 Eight Rooks (not Queens) Evaluation Algorithm

This problem of mapping senses to clusters is similar to #molus 8 Queens problem in chess. This
attempts to place 8 queens on a standard 8 x 8 chess boardhstigiottwo queens kill each other. As
gueens can travel in any direction (horizontal, verticaliagonal), the problem in fact tries to place queens

such that no two queens are in the same row, column or diagotte 8 x 8 matrix.

We observed that if we attach multiple senses to a singléerjuse in fact select two cells in the same row
in the confusion matrix. And similarly, we will select twollsefrom the same column if we attach a single
sense to multiple clusters. Hence, what we would like to@@hhere is to select cells from the confusion
matrix as shown in Table 31 such that not two cells fall in@&ittame row or column. Thus, we view our
M x N confusion matrix as a M x N rectangular chess board on whie attempt to place min(M,N) rooks

such that no two rooks kill each other. In chess, rooks tramst horizontally and vertically and therefore

the condition that no rook should kill another rook autorety achieves our goal of not selecting any two

cells from the same row or column.

Each possible solution to this problem in fact gives one iptsssassignment of senses to clusters. For
example, selecting a confusion cell at (p, ) is equivaletatbeling cluste”, with the sensé,. The value
of this cell at (p, q) is essentially the number of instaneesliisterC,, that will be in their correct sense

classS, if cluster C), is assumed to represent seitse Thus, if we add the values at all the selected cells
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Table 32: Confusion Matrix when (M = N)

SERVE10 SERVE12 SERVE2 SERVEG6
CoO: 556 89 119 25
ClL: 16 5 9 4
C2: 3 1 8 4
C3: 97 422 205 145

for a particular mapping, we get the total number of instarem@rectly classified if clusters are assumed to
represent the senses as suggested by that mapping. Fogfthdimccuracy of the solution, we select the

maximal accurate mapping that gives the maximum numbertalfiftstances in their correct sense classes.

In most of our experiments, we do not assume the knowledgetodlbnumber of senses for a word. Hence,
the number of clusters we end up creating for a word could benhess or equal to the actual number of
senses that word has as per the gold—standard. The follagvendiscussion of how we handle these three

cases while assigning senses to clusters for evaluation.

3.6.2 #CLUSTERS (M) = #SENSES (N)

Suppose we create exactly same number of clusters as thesseiise gold—standard as illustrated in Table
32. Thus, the N x N confusion matrix in this case will resutbitotal N! (factorial) possible mappings that

label every cluster with a single sense.

The following shows the most accurate mapping for the caofushatrix in Table 32:

C0=>SERVEI10
C1=>SERVE2
C2=>SERVEG6
C3=>SERVEI12

This mapping suggests that we view Cluster CO as sense SHR¥k$ter C1 as sense SERVE2 and so on.
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Table 33: Confusion with (M = N) after Column Re-ordering

SERVE10 SERVE2 SERVE6 SERVE12
Co: 556 119 25 89
ClL: 16 9 4 5
C2: 3 8 4 1
C3: 97 205 145 422

Here, SERVE10, SERVEZ2, etc. are sense tags/identifierstasgdehote each sense in the gold—standard.
How these sense tags map to actual dictionary meanings dieperthe particular source of gold—standard

data which we do not discuss here.

We then re-arrange the columns of the confusion matrix shiahthe cells selected by the most accurate
mapping fall across the diagonal as shown in Table 33. Thgodi entries of the confusion matrix after col-
umn reordering indicate the number of instances in eacletltisat are in their correct sense class. Thus, the
sum of all diagonal values gives the overall accuracy far sleiution. In this case, itis (556+9+4+422)=991

which means a total of 991 instances are correctly classifiedrding to the best mapping.

Table 34 shows the final report that we create for our evalnatnd inspections of the results. The additional
column of TOTAL shows the total number of instances in eaaktel and the values in the brackets are the
percentage of the total instances belonging to that clustes is referred to as the column of row marginal

values as the value in each row of this column is in fact the stiall other values on the same row.

Similarly, the additional row of TOTAL indicates the colunmmarginals which is the total number of in-
stances using the sense shown by the particular column wlithgheir corresponding percentage distribu-

tions shown in the brackets.

The total number of instances actually clustered is sintpdystum of all entries in the matrix which is 1708
in this case. Hence, the precision is 991/1708 = 58.08 farghiticular experiment. The total number of
instances that we actually gave to the clustering algoritteme was (1708+44)= 1752 as indicated by the
denominator in recall. This means that our clustering digaor wasn’t able to cluster 44 instances. Hence,

the recall turns out to be (991/1752)=56.56 which is slighaks than the precision.
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Table 34: Final Report for Confusion case (M=N)

SERVE10 SERVE2 SERVE6 SERVEI2TOTAL
CO: 556 119 25 89 789  (46.19)
C1: 16 9 4 5 34 (1.99)
c2: 3 8 4 1 16 (0.94)
C3: 97 205 145 422 869  (50.88)
TOTAL | 672 341 178 517 | 1708

(39.34)  (19.96) (10.42)  (30.27)

Precision =58.02(991/1708)
Recall = 56.56(991/1708+44)

3.6.3 #CLUSTERS (M)> #SENSES (N)

When we create more clusters than the actual number of senigesgold—standard (M N), our mapping
solutions that assume one sense per cluster, leave the @Hbters unlabeled. In other words, N senses
can be mapped only to N (out of M) clusters. We expect that a gnethodology should automatically
create the right number of clusters leaving very few (ideafily 1) instances in the extra (M-N) clusters.
Each possible mapping selects a subset made up of N clustergiie total M clusters and then solves the

mapping problem similar to the previous case when M = N.

Table 35 illustrates the case when we create more (10) cdustan the actual number of senses (4) in
the gold—standard. Table 36 shows the same confusion téblere-ordering its columns to reflect the

maximum accurate mapping across the diagonal.

This shows that only clusters CO, C3, C4 and C9 are assigbetslaccording to the best mapping scheme.
The rest of the clusters are assumed to be the extras whiokxpeeted to contain a smaller percentage
of the total instances. Hence, the total number of instatiwgsare correctly classified is again the sum of
the diagonal values of the column-reordered confusionixnatrich is (401+9+75+393)=878. Note that,

this value does not take into account the instances in thairémg (so called extra) clusters. In an ideal
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Table 35: Confusion Matrix when (M N)

SERVE10 SERVE12 SERVE2 SERVEG6
CoO: 401 23 42 9
Cl: 16 5 9 4
C2: 3 1 8 4
C3: 21 8 23 9
C4: 147 66 75 15
C5: 8 0 2 1
Co6: 0 2 1 2
C7: 0 3 8 3
C8: 9 16 12 7
Co: 67 393 161 124

Table 36: Confusion with (M> N) after Column Re-ordering

SERVE10 SERVE6 SERVE2 SERVE12
Co: 401 9 42 23
C3: 21 9 23 8
C4: 147 15 75 66
Co: 67 124 161 393
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Table 37: Final Report for Confusion case (MN)

SERVE10 SERVE6 SERVE2 SERVEI2TOTAL

CO: 401 9 42 23 475  (27.81)
C3: 21 9 23 8 61  (3.57)
C4: 147 15 75 66 303 (17.74)
Co: 67 124 161 393 745  (43.62)
C1:* 16 4 9 5 34 (1.99)
c2:* 3 4 8 1 16 (0.94)
C5:* 8 1 2 0 11 (0.64)
Cé:* 0 2 1 2 5 (0.29)
C7:* 0 3 8 3 14 (0.82)
c8:* 9 7 12 16 44 (2.58)
TOTAL | 672 178 341 517 | 1708

(39.34)  (10.42)  (19.96)  (30.27)

Precision = 55.43(878/1584)
Recall =50.11(878/1708+44)

solution, all extra clusters are expected to be singletahhemce we will loose only (M-N) instances from

our accuracy score.

A report displaying the column—reordered confusion aloith thhe marginal totals of all clusters is shown in
table 37. Note that, the rows marked with * show the extratelgsthat aren't labeled by the best mapping.
The instances belonging to these extra clusters are treatesh—clustered and hence not considered in
precision. Note that the extra clusters occupy a small péage of the overall instances and hence ignoring

them will not have much impact on the overall accuracy.
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Table 38: Confusion Matrix when (M N)

SERVE10 SERVE12 SERVE2 SERVEG6
CoO: 556 89 119 25
ClL: 116 428 222 153

Table 39: Confusion with (M< N) after Column Re-ordering

SERVE10 SERVEI12
CoO: 556 89
Cl: 116 428

3.6.4 #CLUSTERS (M)< #SENSES (N)

The confusion matrix in Table 38 demonstrates the third ipdisg when we create fewer clusters than
actual number of senses in the gold—standard, i.e; M. In this case, our labeling strategy that assumes
one sense per cluster, will attach only M (out of N) senses tdudters, leaving the extra (N-M) senses

free. In other words, we do not make any attempt to tag moredha sense to any cluster.

Table 39 shows the same confusion matrix from Table 38 afterdering its columns, to show the best

mapping across the diagonal.

This shows that the best mapping used only two senses SERMIEEIBERVE12. The score of the best map-
ping is (556+428)=984. Though, we do not take into accoumiriitances of extra senses (here, SERVE?2
and SERVES) in accuracy score, we do count them in both poec@énd recall. In other words, unlike we

do in case when M> N, we do not discard the instances of extra senses as urereldst

Table 40 shows the final report created for the same solufiba.columns marked with # indicate the extra

senses that weren't attached to any cluster while detengnithie accuracy.

72



Table 40: Final Report for Confusion case &vIN)

SERVE10 SERVE12 SERVE2# SERVEG#HOTAL
CO: 556 89 119 25 789  (46.19)
C1: 116 428 222 153 919  (53.81)
TOTAL | 672 517 341 178 | 1708

(39.34)  (30.27)  (19.96)  (10.42)

Precision = 57.61(984/1708)
Recall = 56.16(984/1708+44)
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4 Experiments

We have thus far introduced various types of features, gbmépresentations, similarity measures and

clustering algorithms. Now we can address one of the ceqir@gtions of this thesis:

Does any particular type of feature, context represemtasanilarity measure, or clustering

algorithm give optimal results under all or certain circtamges?

By circumstances, we mean anything in the formulation ofdai or algorithm that could have an effect
on the overall accuracy of word sense discrimination. Fange, this could include (but is not limited to)

the following:

The different types and amounts of data to be discriminated,

the nature of the training training (local versus global),

coarse versus fine granularity in word meanings, and

balanced versus skewed distribution of word senses in div@rig/test data.

To that end, we present the results of four separate expetsmeach of which is designed to compare and

contrast the various choices that can be made when formglativord sense discrimination solution.

4.1 Experiment 1: Lexical Features and Similarity Measures

The objective this experiment is to determine to what extifférent types of first order features and simi-

larity measures impact the accuracy of sense discrimimattten performed in similarity space.

These experiments use the first order representations téxterwith unigram, bigram and second order
co-occurrences as features. In addition to using each séttypes of features separately, we also created a

novel feature type we call thaix by taking the union of the feature sets of these three femture

1These experiments were performed in December 2002, andasigieally published in the Student Research Workshop at

HLT-NAACL 2003 [34].
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Clustering was then carried out in similarity space by comgupairwise similarities among the first order
context vectors, using the matching and cosine similargfficients. We used the UPGMA clustering
method, which is equivalent to average link clustering araQMitty’s Similarity Analysis. The experiments
are carried out with local training data where each trairgmple used for selecting features includes an

instance of the target word.

4.1.1 Data

In Experiment 1, we used two well known sources of senseethgext, the LINE data [21] and the En-
glish lexical sample data from the SENSEVAL-2 comparatixereise among word sense disambiguation

systems [11].

The LINE data contains 4,146 instances, where each cortfi$tgo to three sentences around a single
occurrence of the worline. Each instance has been manually tagged with one of sixipessnses. We
randomly selected 100 instances of each sense for testattatag separate set consisting of 200 instances
of each sense for training. This gives a total of 600 evadnaitistances, and 1200 training instances. This
is done to test the quality of our discrimination method whkenses are uniformly distributed and where no

particular sense is dominant.

The standard distribution of the SENSEVAL-2 data consi$t8,611 training instances and 4,328 test
instances. There are 73 distinct target words found in thia:d29 nouns, 29 verbs, and 15 adjectives. Most
of these words have less than 100 test instances, and apgiteky twice that number of training examples.
Instances in the training data indicate the correct sengheofvord intended in that context, while, the
correct senses for the test instances are provided in asde@arswer key file. Each word has from 8 to 12
possible senses according to both the keyfile and the tcpohata. Also, there are many training and test

instances in this data that show multiple correct sense tags

It's important to note that we do not use the sense tags alaila the training and test data as a part of
the clustering process, nor do we use them for feature satediowever, we do use them to filter out low
frequency senses of words that appear in the training ahgeges/Ne believe this is a reasonable step to take,
since the amount of training and test data is very small, @&dhg number of senses per word is relatively

large. This leads to some senses that occur a very small mwhbmes, and we eliminate the smallest of

75



these prior to any processing going forward.

Specifically, we only retain those training and test instsnwhose actual sense is among the top five most
frequent senses as observed in the training data for that Wde believe that even 5 is an aggressive number
of senses for a discrimination system to attempt, consigahat Pedersen and Bruce [30] experimented

with 2 and 3 senses, and Schitze [39] made binary distmgtio

Also, in cases where a test instance has more than one gossititect answer, we only kept the most
frequent of those. The other possible answers were distasitece our evaluation technique assumes one
possible correct sense per cluster. We also noticed th&BMSEVAL-2 data identifies target words that
are being used as proper nouns. We decided to not this factridiscrimination by removing these so—
called P tags from the data. After carrying out all these megssing steps, we were left with total 7,476

training and 3,733 test instances.

We then specify an upper limit on the number of senses thatlastering algorithm should discover. In
Experiment 1, we set this limit to 5 for SENSEVAL-2 words anéb6 LINE. As we included all senses
at every rank above 5, without trying to break the ties, theamumber of senses in the evaluation data
could be 5 or more. Also, we set a similarity score cutoff toltlolu stops clustering as soon as there is no
pair of clusters with similarity above 0. This cutoff sonmadis stops clustering prematurely before creating
5 clusters. Hence, even on selecting top 5 senses and gréatinsters, the actual number of discovered

clusters is not always same as the number of true sensesendhetion data.

4.1.2 Results

For each word in the SENSEVAL-2 data and LINE, we conductetua permutations of Experiment 1,
each of which uses a different combination of features arasone of similarity. Specifically, we performed
total 8 experiments on each word using all combinations gpé4 of features (unigrams, bigrams, second-

order co-occurrences and mix) with 2 types of similarity sweas (matching and cosine coefficients).

As this leads to a very large number of results to analyze (@BIsv* 8 experiments/word = 584), we
computed the average accuracy obtained for all words bilgrig the same part of speech (POS) category
(nouns, adjectives and verbs). We also counted the numheoros from each POS for which a particular

experiment did better than the majority classifier. As thedddNE uses larger amount of training and test
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data than SENSEVAL-2 words, we do not include LINE in the ngategory of SENSEVAL-2 words

and analyze its results separately.

Table 41 displays the average precision and recall for e@® €&ategory for SENSEVAL-2 words, and
Table 42 shows the same for LINE.

The first column indicates the POS, the second shows thaéeigfe, the third lists the measure of similar-
ity, the fourth and the fifth show the average precision ardlt®f all words in that POS category for the
particular experiment shown by the 2nd and 3rd columns. Tk solumn shows the average percentage
of the majority sense for all words in that POS. The final calishows the actual number of words in the
given POS that gave accuracy greater than the percentalye wfdjority sense of that word for a particular

combination of feature type and similarity measure as atdit¢ by columns 2 and 3.

4.1.3 Analysis

Tables 43, 44 and 45 show the breakdown of SENSEVAL-2 rebyligart of speech (POS). Specifically,
each value in these tables indicates the number of words tfinenparticular POS on which a particular
experiment (as indicated by the corresponding row and coliainels) performed better than the majority

classifier.

Recall that there were total 29 nouns, 28 verbs and 15 adisctAs these tables indicate, the performance
was overall better for verbs and nouns. But hardly any adgsishowed results better than the majority
classifier. We believe that, this could be because the adedin this data have skewed distributions that
results in a very high accuracy attained by the majoritysifaes, which makes this a difficult standard for
an unsupervised method to reach. Verbs and nouns, on thetathd, have fairly balanced distributions

which suggests that our strategy works better on the datdichmo particular sense dominates.

Tables 46, 47 and 48 show a similar breakdown of results fod SEVAL-2 words organized by the feature
type. Each table value shows the number of words from the P@iSated by the corresponding row, on
which a particular combination of feature type and simijameasure performed better than the majority

classifier.

These results show that the second order co-occurrenceSsjSEd unigrams achieved the overall best
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Table 41: Experiment 1 Results : Features and Similaritydess (SENSEVAL-2)

pos feat meas prec rec maj| > maj
noun soc cos| 0.49 0.48 0.57 6/29
mat | 0.54 0.52 0.57 7/29

big cos | 053 0.50 0.57 5/29

mat | 0.52 0.49 0.57 3/29

uni cos | 0.50 0.49 0.57 7/29

mat | 0.52 0.50 0.57 8/29

mix cos | 0.50 0.48 0.57 6/29

mat | 0.54 0.51 0.57 5/29

verb soc cos| 051 0.49 0.51 11/28
mat | 0.50 0.47 0.51 6/28

big cos | 054 045 0.51 5/28

mat | 0.53 0.43 0.51 5/28

uni cos | 0.42 0.41 0.51] 13/28

mat | 0.43 0.41 0.51 9/28

mix cos | 0.43 0.41 0.51 12/28

mat | 0.42 0.41 0.51 7/28

adj soc cos| 059 054 0.64 1/15
mat | 0.59 0.55 0.64 1/15

big cos | 056 051 0.64 0/15

mat | 0.55 0.50 0.64 0/15

uni cos | 0.55 0.50 0.64 1/15

mat | 0.58 0.53 0.64 0/15

mix cos | 0.50 0.44 0.64 0/15

mat | 0.59 0.54 0.64 2/15
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Table 42: Experiment 1 Results : Features and Similaritysvess (LINE)

word feat meas prec rec maj| > maj

line soc cos|0.25 025 0.17 111
mat | 0.23 0.23 0.17 1/1

bigg cos |0.19 0.18 0.17 11
mat | 0.18 0.17 0.17 111

uni cos | 0.21 0.21 0.17 11
mat | 0.20 0.20 0.17 1/1

mix cos [ 0.21 0.21 0.17 11
mat | 0.20 0.20 0.17 11

Table 43: Experiment 1: #Nouns (out of 29)MAJ

COS MATCH
SOC| 6 7
Bl 5 3
UNI 7 8

Table 44: Experiment 1: #Verbs (out of 28)MAJ

COS MATCH
SOC| 11 6
Bl 5 5
UNI 13 9
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Table 45:; Experiment 1: #ADJ (out of 15) MAJ

COS MATCH
SOC| 1 1
Bl 0 0
UNI 1 0

Table 46: Experiment 1: Performance of Second Order Coroences

COS MATCH
N 6 7
11 6
A 1 1

Table 47: Experiment 1: Performance of Bigrams

COS MATCH
N 5 3
5 5
A 0 0

Table 48: Experiment 1. Performance of Unigrams

COS MATCH
N 7 8
13 9
A 1 0
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learn word usages.

experiments.

Table 49: Experiment 1. Performance of Cosine Coefficient

SOC Bl UNI
N 6 5 7
11 5 13

A 1 0 1

Table 50: Experiment 1: Performance of Matching Coefficient

SOC Bl UNI

N 7 3 8
6 5 9
A 1 0 0

results, while bigrams didn’t do as well as was expected. él@wy we realize that most of the SENSEVAL-

2 words have about 100-200 total training instances, wtddh fairly small sample of text from which to

Simply put, smaller data leads to smaller number of bigrakhsreover, bigram feature matching is more
demanding than single word matching since it requires twode/ébe matched in a specific order within a
small window. Hence, the context vectors based on a smallafbigram features are quite sparse and do
not provide sufficient information about the target worde loor performance of bigrams as shown by these
experiments suggests that these are not suitable feathasthve available training data is small in quantity,
as is the case of the SENSEVAL-2 words. This result motivates$o consider either improving our

context representations or using larger collections dff@xtraining, issues that we explore in subsequent

Tables 49 and 50 compare the performance of two similaritgsuees: cosine and match coefficient. Specif-
ically, each value in these tables shows the number of wooas & part of speech (as indicated by the row
label) that performed better than the majority classifieewhsing a particular feature type (as shown by the

column label) for the selected measure of similarity. ONelfave look at the total of all values in Tables
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49 and 50, we see that cosine performed better than matck.isTakpected, as the cosine measure takes

into account the lengths of the vectors, rather than simplynting the number of matching features.

We also note that the precision and recall of the clusterfrtbeoLINE data is generally better than that of
the majority sense regardless of the features or measumgsysd. We believe this is because the number
of training instances for the LINE data is significantly hegi§1200) than that of the SENSEVAL-2 words.
The number and quality of features identified improves a®rsibly with an increase in the amount of
training data, making the amount of training data availdbtefeature identification critically important.
This motivates us to consider augmenting the training aat8 ENSEVAL-2 words by collecting instances
of these words from the World Wide Web or other larger textemtions like the New York Times Newswire

corpus or the British National Corpus.

4.2 Experiment 2: First and Second Order Context Represent#ons

In Experiment 1 we represent instances of words using fiddrorontext representations, and cluster them
using the agglomerative UPGMA algorithm in similarity spaé¢n those experiments, we observed that no
matter what feature type we use, the first order context septations are always very sparse due to the fact
that each feature contributing to the context vector mustiom that context. Also, there is an additional
level of feature matching done by our similarity measureclwhHooks for matching features among these
vectors. So, the methodology that we used in the previousrerpnts not only requires that a feature found
in the training is matched exactly in the test, but also etgoleo test contexts to have matching features to

get a similarity score.

In Experiment 1 we observed that this double feature magcfonce while finding the context represen-
tations and again while computing the similarity scoredimately provides very little information to the
clustering algorithm, which simply gets a very sparse iy} matrix with very low similarity scores

among most of the pairs of contexts.

These findings motivated us to try a better context repraientand clustering approach that do not rely

on literal feature matching between the test contexts. fx@at 22 was designed in response to these

2These experiments were originally published in the Proogsdf the Conference on Computational Natural Languageri-e

ing (CONLL-2004) [35]
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concerns, and it employs a second order context representath a hybrid clustering algorithm.

Specifically, these experiments make a systematic congpeaimong the first and second order context rep-
resentations using two different kinds of features (bigg@mnd co-occurrences) and two separate clustering
approaches. Contexts are first represented in vector sgauwg the first and second order representations.
These vectors are directly clustered in vector space usimgbad clustering method known as Repeated
Bisections [41]. Then, we compute pairwise cosine sintiegiamong the context vectors and perform
clustering in similarity space using the UPGMA method, as @ane for Experiment 1. We also reduce
the dimensionality of second order vectors via Singulau®ddecomposition (SVD), in order to discover
similarities among the contexts that use conceptuallytedlar synonymous features rather than literally

matching strings.

4.2.1 Data

In these experiments, we use 24 of the 73 SENSEVAL-2 wordsthad INE, HARD and SERVE

corpora.

The LINE, HARD and SERVE corpora do not have a standard trgirtiest split, so these were randomly
divided into 60—40 training—test splits. Each of these ocmahas about 4000 total instances and hence after

splitting, we get approximately 2400 training and 1600 testances.

Like Experiment 1, we decided to remove the low frequencgesnf the SENSEVAL-2 words. However,
in Experiment 2 we removed the senses that occur in less Bfaot the total instances for the word. This
prevents us from knowing the number of senses associatédawit given word, which was not the case
in Experiment 1, where we knew there were 5 senses per wotdr Afmoving the low frequency senses,
we selected all the words that are left with more than 90 imgimstances. This is because words with
fewer training examples than this will generally perfornitgupoorly due to the lack of a sufficient quantity
and quality of features. After this filtering we were left Wia set of 24 words which includes 14 nouns, 6

adjectives and 4 verbs as shown in Table 51.

In Experiment 2 we also decided to experiment with discratimg senses of multiple target words simul-
taneously. For this we created data that has instances ¢ipfauwvords. To do this, we randomly selected

five pairs of words from the SENSEVAL-2 data and combined thaing and test instances separately
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for each pair of words. This gave us a mix training and testaitinat includes instances of two different
words. After mixing, we applied the 10% sense filter and resdothe training and test instances whose

correct sense has frequency below 10% of the new mixed sample

The evaluation of the mixed data is done as if we clusterddmegs of a single word that has as many senses
as the sum of the number of senses of the two mixed words. Wetdexpect to see two big coarse grained
clusters, each containing all instances of a single wortlrddher we expect to obtain as many clusters as

the total number of senses in the mixed data.

We believed that this mix-word data could be either challeggr easy for discrimination, depending on the
degree to which the two mixed words are related. If they skame meanings, then our algorithm might
group together their instances, while if the words are @aeel then making coarse grained distinctions
between their senses should not be hard. As such, these onds\provide data with both fine and coarse

sense granularities.

Tables 51 and 52 show all the words that were used in Expetidyealong with their parts of speech.
Thereafter we show the number of training (TRN) and testimsgs (TST) that remain after filtering, and
the number of senses found in the test data (S), for each Wéedhlso show the percentage of the majority

sense in the test data (MAJ).

In Experiment 2, we set the upper limit on the number of chsste be discovered to 7. As can be seen from
column S in Tables 51 and 52, most of the words have 2 to 4 semsagerage. Hence, by creating more
clusters, we can test our hypothesis that our clusteringoaph discovers approximately same number of
clusters as senses for that word. We detect the significastetk by ignoring (i.e., throwing out) clusters
that contain less than 2% of the total instances. The inetairt the discarded clusters are counted as
unclustered instances and are subtracted from the totab&uaf instances while computing the precision

value.

4.2.2 Results

We present the discrimination results for six differentfigurations of features, context representations and
clustering algorithms. These were run on each of the 27 ttavgeds, and also on the five mixed words.

What follows is a concise description of each configuration.
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e PB1: First order context vectors, using co—occurrenceifeaf are clustered in similarity space using

the UPGMA technique.

e PB2 . Same as PB1, except that the first order context vecterslastered in vector space using

Repeated Bisections.

e PB3: Same as PB1, except the first order context vectors igearbfeatures instead of co—occurrences.

All of the PB experiments use first order context represematthat correspond to the approach suggested

by Pedersen and Bruce.

e SC1: Second order context vectors of instances were ohastarvector space using the Repeated
Bisections technique. The context vectors were created fhe word co—occurrence matrix whose

dimensions were reduced using SVD.

e SC2: Same as SC1 except that the second order context vaotorsnverted to a similarity matrix

and clustered using the UPGMA method.

e SC3: Same as SC1, except the second order context vect@reated from the bigram matrix.

All of the SC experiments use second order context vectadshance follow the approach suggested by

Schitze.

Experiment PB2 clusters using the Pedersen and Bruce disde drder) context vectors, but with the
Schiitze like clustering scheme. SC2 tries to see the effeasing the Pedersen and Bruce style clus-
tering method on Schiltze style (second order) contexbv®cThe motivation behind experiments PB3 and

SC3is to evaluate bigram features in both PB and SC stylerbwectors.

The F—measure associated with the discrimination of eacl w@ashown in Tables 51 and 52. Any score
that is significantly greater than the majority sense (atiogrto a paired t—test) is shown in bold face. The

italicized entries show the best performance (includireg i the majority classifier) for each word.
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Table 51: Experiment 2. F-measures - First and Second Oraleiets (SENSEVAL-2)

n

word.pos TRN TST PB1 SC1 PB2 SC2 PB3 SCBMAJ

art.n 159 83 3797 4552 4546 46.15 43.0355.34 | 46.32
authority.n 168 90 38.15 51.25 43.9353.01 41.86 34.94| 37.76
bar.n 220 119 34.63 37.23 50.66 40.87 41.05 58.26 | 45.93
channel.n 135 67 640.63 37.21 40.314154 36.51 39.06 31.88
child.n 116 62 2| 45.04 46.85 51.32 50.00 55.17 53.456.45

church.n 123 60 57.14 49.09 48.21 55.36 52.73 46.459.02

& B N

N

circuit.n 129 75 8| 25.17 3472 3217 33.33 27.97 25.35 30.26
day.n 239 128 3 60.48 46.15 55.65 45.76 62.65 55.56%2.94
facility.n 110 56 3| 40.00 58.00 38.09 58.00 38.46 64.76 | 48.28
feeling.n 98 45 2| 58.23 51.22 5250 56.10 46.34 53.661.70
grip.n 94 49 5| 45,66 43.01 58.06 53.76 49.46 49.46 46.67

material.n 111 65 32.79 40.98 41.32 4754 32.79 4754 | 42.25

(@]

mouth.n 106 55 4 5490 4753 60.78 43.14 43.14 47.06| 46.97
post.n 135 72 5§ 32.36 37.96 48.17 30.88 30.88 32.36| 32.05
blind.a 97 53 3| 53.06 61.18 63.64 58.43 76.29 79.1B2.46
cool.a 102 51 5 3542 39.58 38.71 34.78 33.68 38.Y42.86
fine.a 93 59 5 47.27 4771 4771 33.93 38.18 47.71 | 41.10
free.a 105 64 3 48.74 49.54 5254 5546 45.00 52.99| 49.23

N

natural.a 142 75 43472 3521 3356 30.99 32.4038.03  35.80

simple.a 126 64 4 38.33 50.00 47.06 38.33 38.33 47.060.75
begin.v 507 255 3 59.36 40.46 40.40 43.6670.12 4255| 64.31
leave.v 118 54 § 43.14 38.78 27.73 40.00 46.00 53.47 | 38.18
live.v 112 59 4| 37.83 40.00 48.21 45.45 36.37 41.8537.63
train.v 116 56 5| 28.57 33.96 2857 3428 26.67 32.08 33.93
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Table 52: Experiment 2: F-measures - First and Second Omalete&ts (LINE, HARD, SERVE, and mix)

word.pos TRN TST § PB1 SCl1 PB2 SC2 PB3 SCBMAJ
line.n 1615 1197 3 72.67 26.77 62.00 55.47 68.40 37.9772.10
hard.a 2365 1592 286.75 67.42 41.18 73.22 87.06 63.4B7.44
serve.v 2365 1752 440.50 33.20 36.82 34.3745.66 31.46| 40.53

cool.a-train.v 197 102 § 22.34 39.00 25.25 40.61 22.57 41.00 | 22.86
fine.a-cool.a 185 104 727.86 42.36 33.8347.72 35.00 42.05 24.79
fine.a-grip.n 177 99 7 36.84 4948 3350 45.02 31.4149.48 | 24.19
leave.v-post.n 204 113 B29.36 48.18 32.11 41.44 23.85 41.8221.01
post.n-grip.n 208 117 8 28.44 4367 28.44 41.05 26.55 34.2120.90

4.2.3 Analysis

We employ three different types of data in Experiment 2. TRANSEVAL-2 words have a relatively small
number of training and test instances (around 50-200). Mewe¢he LINE, HARD and SERVE data
is much larger, where each contains around 4200 trainingestdnstances combined. Mixed words are
unique because they combined the instances of multiplettargrds and thereby have a larger number of
senses to discriminate. Each type of data brings with itusnicharacteristics, and sheds light on different

aspects of our experiments. Hence, we analyze the reswdtcbfdataset separately.

SENSEVAL-2 data Table 53 compares PB1 against PB3, and SC1 against SC3, hdemrhethods are
used to discriminate the 24 SENSEVAL-2 words. Our objecis/¢éo study the effect of using bigram
features against co—occurrences in first (PB) and seconfli$l€r context vectors while using relatively
small amounts of training data per word. Note that PB1 and &&lco—occurrence features, while PB3

and SC3 rely on bigram features.

This table shows the number of nouns (N), adjectives (A) amtis/(V) where bigrams were more effective
than co-occurrences (bigranco-occur), less effective (bigratrto-occur), and had no effect (bigram=co-

occur).
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Table 53 shows that there is no clear advantage to usingr déitheams or co—occurrence features in first
order context vectors (PB). However, bigram features sHear@amprovement in the results of second order

context vectors (SC).

Our hypothesis is that first order context vectors (PB) regmea small set of bigram features since they are
selected from the relatively smaller training data. Thesdures are very sparse, and as such most instances

do not share many common features with other instancesngéikst order clustering difficult.

However, second order context vectors indirectly repreb@ram features, and do not require an exact
bigram match between vectors in order to establish sirtylafihe matching is still performed at the single
token level. Thus, the poor performance of bigrams in the cddirst order context vectors suggests that
when dealing with small amounts of data, we need to boostrictenur bigram feature set by using some

other larger training source like a corpus drawn from the Web

Table 54 shows the results of using the Repeated Bisectlgngthm in vector space (PB) against that of
using UPGMA method in similarity space. This table showsribmber of Nouns, Adjectives and Verbs
SENSEVAL-2 words that performed better (thapgma), worse (rbrtupgma), and equal (rbr=upgma)
when using Repeated Bisections clustering versus the UP@&diAnique, on first (PB) and second (SC)

order vectors.

In short, Table 54 compares PB1 against PB2 and SC1 agaistF8Gm this, we observe that with both
first order and second order context vectors, Repeated t®issds more effective than UPGMA. This
suggests that it is better suited to deal with very small arteof sparse data. This could be because the
Repeated Bisections method uses a partitional divisiveoagh that simply divides the given set of vectors
in space, rather than performing detailed pairwise comspas as done by UPGMA. With sparse vector
representations as we get with smaller training, such fimepemisons in similarity space might not be

helpful as most of the instances will have low similarityues.

Table 55 summarizes the overall performance of each of tbggeriments compared with the majority
class. This table shows the number of words for which an éxget performed better than the majority
class, broken down by part of speech. Note that SC3 and SChase often better than the majority
class, followed closely by PB2 and SC2. This suggests tlesétond order context vectors (SC) have

an advantage over the first order vectors for small trainiaig @s is found among the 24 SENSEVAL-2
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Table 53: Experiment 2: Bigrams vs. Co-occurrences

N AV

7 1 2| bigrantco-occur
PB| 6 4 2| bigramxco-occur

1 1 0| bigram=co-occur

9 3 3| bigrantco-occur
SC|4 1 1| bigranmkco-occur

1 2 0

bigram=co-occur

Table 54: Experiment 2: Repeated Bisections vs. UPGMA

PB rbr>upgma
rbr<upgma

rbr=upgma

SC rbr>upgma

rbr<upgma

AN |, A ©|Z2
o Ul B, |N O N~|P
O Wl lkr Nv (<

rbr=upgma

words.

We believe that second order methods work better on smalleuats of data, in that the feature spaces are
quite small, and are not able to support the degree of exaching of features between instances that first
order vectors require. Second order context vectors sddnemich cases because they find indirect second

order co—occurrences of feature words and hence descelmtiiext more extensively than the first order

representations.

With smaller quantities of data, there is less possibilityfimding instances that use exactly the same set
of words. Semantically related instances use words that@meeptually the same but perhaps not lexi-

cally. Second order context vectors are designed to igesti€h relationships, in that exact matching is not
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Table 55: Experiment 2: All vs. Majority Class

N A V | TOTAL
SC3>MAJ |8 3 1 12
SCI>MAJ |6 2 2 10
PB2>MAJ |7 2 O 9
SC2>MAJ |6 1 2 9
PB1I>MAJ |4 1 1 6
PB3>MAJ |3 0 2 5

required, but rather words that occur in similar contexts lwéive similar vectors.

LINE, HARD and SERVE data The comparatively good performance of PB1 and PB3 in the afbe
LINE, HARD and SERVE data (see Table 52) suggests that fidgrarontext vectors when clustered with

UPGMA perform relatively well on larger samples of data.

Moreover, among the SC experiments on this data, the pesfucenof SC2 is relatively high. This further

suggests that UPGMA performs much better than RepeatedtBiss with larger amounts of training data.

These observations correspond with the hypothesis draammtihe SENSEVAL-2 results. That is, a large
amount of training data will lead to a larger feature spaatl@nce there is a greater chance of matching
more features directly in the context of the test instankksice, the first order context vectors that rely on
the immediate context of the target word succeed as thexdsraee more likely to use similar sets of words

that in turn are selected from a large feature collection.

Mix-Word Results Nearly all of the experiments carried out with the 6 diffdrerethods perform better

than the majority sense in the case of the mix-words. Thigitglly due to the fact that these words have
a large number of senses, and therefore have low majorigitilers which set an easy standard to reach. In
addition, recall that this data is created by mixing inséanef distinct target words, which leads to a subset

of coarse grained (distinct) senses within the data thagasmr to discover than the senses of a single word.

Table 52 shows that the top 3 experiments for each of the mis@ds are all second order experiments
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(SC). We believe that this is due to the sparsity of the feagpaces of this data. Since there are so many
different senses, the number of first order features thatduoel required to correctly discriminate them is

very high, leading to better results for second order vector

4.2.4 Conclusions

We conclude that for larger amounts of homogeneous dataasithe LINE, HARD and SERVE, the
first order context vector representation and the UPGMAtehiryg algorithm are the most effective at word
sense discrimination. We believe this is the case becausdaige sample of data, it is very likely that the
features that occur in the training data will also occur i tlst data, making it possible to represent test
instances with fairly rich feature sets. When given smali@ounts of data like SENSEVAL-2, second
order context vectors and a hybrid clustering method likpedged Bisections perform better. This occurs
because in small and sparse data, direct first order feaueeseldom observed in both the training and the
test data. However, the indirect second order co—occugrarationships that are captured by these methods

provide sufficient information for discrimination to praask

4.3 Experiment 3: Local and Global Training

From the results of Experiments 1 and 2, we realized the raddrije amounts of training data. Hence, in
Experiment 3, we employ a large newswire corpus insteadyihgeon a smaller volume of available local
training data. Unlike the local training data, the newsvieet is a running corpus that includes complete

news articles, and is not simply a collection of context®eissed with a specific target word.

The goal of Experiment 3 is to test if a large sample of runriorgglobal) text is a better source of training
data for sense discrimination than is a smaller sample @fl limaining data as was used in Experiments 1
and 2. In this section, we present a comparison of resulrgdd in Experiment 2 against those obtained

by using the global training data.
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4.3.1 Data

In particular, we used the Associated Press Worldstreantigbn8ervice (APW) newswire as the source
of global training data. This was distributed as a part ofEEhnglish GigaWord corpus by Linguistic Data
Consortium (LDC), at the University of Pennsylvania. Thaalconsists of text collected from the APW
newswire from November 1994 to June 2002. It contains a wwitdl, 477,466 articles and 539,665,000
words. Each news article is divided into a number of pardggagach of which we treat as a separate
context. When counting bigrams or word co-occurrence paiesassume that the scope of each context
ends at the paragraph boundary and don't consider pairs mfsvtbat span across paragraph boundaries as
features. Also, due to the large size of this data, we did setany window for bigram and co-occurrences.

Hence, only pairs of words immediately next to each othecarsidered.

The test instances are made up of the same SENSEVAL-2 woddha.INE, HARD and SERVE cor-
pora as used in Experiment 2. All the preprocessing was dotieiexactly same manner as in Experiment

2, in order to allow for the direct comparison of results.

4.3.2 Results

Table 56 shows F-measure values obtained by running the siareenfigurations of feature, context, and
clustering types as used in Experiment 2, which featuredl ltvaining. As before, the bold face entries
show where the results were significantly more accurate tifiamajority classifier. The maximum value
in each row including the majority sense is italicized. E#marked X indicate that we we were unable to
get SC1 and SC2 results on some words, in particular daygin.beand the line.n, hard.a and serve.v. The
co-occurrence matrices created for these words were tge (approximately 7000 x 200,000) to carry out
Singular Value Decomposition due to the large amount of mgmequired to perform the computations.
In future, we plan to adjust the cutoff values on frequencgl statistical measures of association in the
hopes of reducing the number of features. Also, we will eseolbe use of computationally more efficient

implementations of SVD.

Table 57 shows a pairwise comparison of results with globdllacal training for each experiment on each
word. A mark of G indicates that the global experiment wasdbehan the corresponding local experiment,

while L indicates otherwise. X shows either a tie betweemgland local results, or cases where we could
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Table 56: Experiment 3. F-Measures with Global Training

word.pos | PB1 SCl1 PB2 SC2 PB3 SC3MAJ
art.n 4750 29.42 3566 39.73 44.17 28.9946.32
authority.n| 34.15 32.00 41.13 39.49 37.29 35.14| 37.76
bar.n 66.09 32.86 45.00 52.81 48.31 31.53| 45.93
channel.n | 58.02 35.20 45.53 42.75 51.13 33.0731.88
child.n 5494 3218 35.00 49.09 52.99 33.7Y56.45
church.n | 55.91 32.50 40.00 62.86 54.87 33.73| 59.02
circuit.n 40.00 40.00 48.00 48.00 34.67 38.67| 30.26
day.n 44.92 X 31.70 X 52.59 29.4562.94
facility.n 39.13 35.95 4578 33.34 40.74 36.1%38.28
feeling.n | 54.05 38.10 27.59 50.66 56.10 32.y®1.70
grip.n 58.33 40.00 30.59 53.19 44.21 34.48| 46.67
material.n | 36.67 33.62 34.23 34.92 35.94 39.292.25
mouth.n | 46.46 36.36 35.95 39.5948.60 35.16| 46.97
post.n 4782 3492 43.90 32.62 36.62 40.32| 32.05
blind.a 41.86 29.41 30.98 51.95 49.48 31.882.46
cool.a 4256 36.95 42.69 4849 43.30 29.55| 42.86
fine.a 44.04 30.48 33.66 41.74 4522 33.01| 41.10
free.a 48.74 36.17 2857 43.86 47.54 39.139.23
natural.a | 34.78 35.00 44.83 35.04 33.33 36.80 35.80
simple.a | 4590 34.61 33.01 41.02 43.20 33.p50.75
begin.v 53.44 X 31.89 X 6562 36.51|64.31
leave.v 43.39 34.41 30.93 39.62 47.17 39.13| 38.18
live.v 38.53 35.05 36.56 33.65 35.09 36.957.63
train.v 37.38 41.66 4286 39.25 30.91 37.11| 33.93
line-n 74.27 X 51.00 X 71.28 43.75 72.10
hard-a 86.87 X 35.12 X 74.23 45.6487.44
serve-v 39.58 X 4214 X 36.79 35.18| 40.53
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Table 57: Experiment 3: Comparing Global and Local Training

word.pos | PB1 SC1 PB2 SC2 PB3 SC3Best
art.n G L L L G L L
authority.n| L L L L L X L
bar.n G L L G G L G
channel.n | G L G G G L G
child.n G L L L L L L
church.n L L L G G L G
circuit.n G G G G G G G
day.n L X L X L L L
facility.n L L G L G L L
feeling.n L L L L G L L
grip.n G L L X L L X
material.n | G L L L G L L
mouth.n L L L L G L L
post.n G L L G G G L
blind.a L L L L L L L
cool.a G L G G G L G
fine.a L L L G G L L
free.a X L L L G L L
natural.a X X G G X L G
simple.a G L L G G L L
begin.v L X L X L L L
leave.v X L G X G L L
live.v X L L L L L L
train.v G G G G G G G
line.n G X L X G G G
hard.a X X L X L L L
serve.v L X G X L G L
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Table 58: Experiment 3: Summarizing Global vs. Local Corgoars

G L X
PB1|12 10 5
PB2| 8 19 O
PB3|17 9 1
SC1l) 2 19 6
SC2110 10 7
SC3| 5 12 1

not compute the global results as indicated in Table 56.

The last column of table 57 compares the best result obtaiibdglobal training against the best result
obtained with local. The G entry indicates that for that igatar word, the highest performance obtained
with global training was greater than the highest perforteanbtained with local training, among the six
variations we attempted. L shows otherwise, meaning, teerbsult of local was better than the best global.
X shows the tie between the best global and local. As the rlfgests there are very few words on which
global data improved the performance. We notice that moshede words (excepine) are among the
words that have the least majority sense frequency combittech larger number of senses. Note that, this
combination of large number of senses and lower majoritydéa smaller set of instances using each sense,
which in turn leads to overall poor quality feature set tragh't have sufficient features for any sense. The
nouncircuit is an extreme case with maximum number of senses (8) (evemfiétitring) and clearly shows
quite a lot improvement in all the experiments with globalrimg. This suggests that with large number of
senses and lower majority, a larger volume of global dataiges better features than smaller amounts of

local data.

Table 58 summarizes the information in Table 57 by counthgtobtal number of words for each of the
experimental configurations on which the specific type ahing was most successful. Specifically, the
rows represent the six configurations: PB1, SC1, PB2, SC3, RBd SC3. The values in column G
indicate the total number of words for which global trainings better for the experiment indicated by the
corresponding row label. Similarly, the values in colummticate the number of words for which local

training was better and X indicate the ties.
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This table shows that global training only improved the perfance of configurations PB1 and PB3, both
of which used the first order contexts and UPGMA clustering.dfscussed in the previous sections, both
the settings are especially challenging for smaller amofitvining data due to the combination of smaller
feature sets, sparse first order context vectors and rigotomparisons done by UPGMA in similarity
space. Global training in this case provides better feat(aed hence context representations) compared to
smaller quantity of local training. However, overall compan shows that local training even though was
employed in smaller amount proves better than larger ghoailing for most of the words and most of the

other configurations.

4.4 Experiment 4. Augmenting Training Data with Dictionary Content

In all the experiments thus far, we took a knowledge—learraggt that uses no additional information
other than what is present in the raw text. As we noticed indikpents 1 and 2, this approach doesn't
succeed very well when there are small quantities of trgidiata. In Experiment 3, we tried to overcome
this limitation by using a large amount of newspaper textaising corpora. However, we found that the
performance obtained with global training was no bettentlogal training. Hence, in Experiment 4, we
decided to take a more knowledge intensive approach, aliwkeutie content of an electronic dictionary to

improve the quality of our training data.

Recall that second order context vectors represent cenbgxin average of the feature vectors of words
that appear in that context. A feature vector (like a co-a@mce or bigram vector) is assumed to provide
information about the meaning of the corresponding featumel, in terms of the words that often co-occur
with it in the given training data. If the training data is Ibed in size, as was the case in Experiments 1 and
2, the feature vectors will be represented in fewer dimarssand would not have sufficient information to

convey the meaning of that word, or in turn, the meaning oftthr@ext in which they occur.

In Experiment 4, we enrich these corpus derived featureccowoence vectors by adding words that describe
the meaning of this feature word in a dictionary. Thus, waesent each feature word observed in the
context of the target word in a test data by a vector of words dne either observed in the context of that

word in training or that appear in its dictionary definition.

We hypothesize that for each word there is an associated satrds that a human judge would say are
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related. The nature of this relationship can vary, but ithhigxist because the words frequently co—occur,

or they have similar meanings, or they are used to define ebeh o

For example, some of the words that a human might think of ileyhear the wor@HELLareSEASHORE,
AMMUNITION, ARTILLERY, COVERING, GUNS, FIRE, EXPLOSIVEYELOP,etc. We noticed that
these are essentially the words that are found in the demyodefinition of SHELL, or they are found in
the context ofSHELLin some text. This observation led to Experiment 4, where a@did to augment
the word co-occurrence vectors as derived from the smatlitigh data with the words that appear in the

dictionary definition (olglosg of that word.

We used WordNet-2.0 [12] in Experiment 4 as the source ofsgimsbut any other machine readable dictio-
nary would suffice. For each word observed in the context eftéinget word in the test data, we construct
a binary co-occurrence vector that shows the words thatcaran the context of this word in the training

data. We then augment each co-occurrence vector with atidhtent words that appear in the glosses of

various senses of that word.

For example, suppose we obseB@®MBin the context of our target worBHELLSn a test instance. Then,
we first create a co-occurrence vectorB@MBthat shows the words that co-occur with this word in training
data. Suppose, we observe woAIEOM, NUCLEAR, BLAST, ATTACK, DAMAGE, KlirLthe context of
BOMBIn our training. Note that, this can be viewed as a purely esipased co-occurrence vector. Now,
we refer to WordNet and see the words that appear in varimssgt of the wor@OMB. Some of such
words areATTACK, DENOTE, EXPLOSIVE, VESSEL, HEWE refer to this as a gloss vector. In these

experiments, we take the union of the corpus derived coroeace vector with the gloss vector as:
ATOM, NUCLEAR, BLAST, ATTACK, DAMAGE, KILL, DENOTE, EXPMBSVESSEL, HEAT

In summary, if a word is observed in the context of the targetdan a test instance, and appears in both
training and WordNet, then its feature vector is a union®§lbss vector and corpus—derived co-occurrence
vector. If the word doesn’t appear in the training data bydeaps in WordNet, its feature vector is same
as its gloss vector as derived from WordNet. On the other hiétice word appears in training but not in
WordNet, its vector is same as the corpus—derived co-ceccer vector. And finally, if the word doesn’t
appear in either training or WordNet, there will be no ve@ssociated with it. And it will contribute no

information to the context vector of an instance in whichppears. In short, a context vector is simply an

97



addition (binary OR function) of all feature vectors of camtwords that appear in the context.

Since the gloss augmentation to the corpus derived co-@we vectors leads to significant growth in the
dimensionality of the feature space, we perform SVD to redhe size of the feature space. In this set of

experiments, we reduce the feature space to 2% of its sieegifiss additions.

The context vectors are then clustered using UPGMA whiclwsdobetter performance over Repeated

Bisections for a larger amount of training data in our pragiget of experiments.

4.4.1 Data

As in previous experiments, here we also used the SENSEVAl+pus, and the LINE, HARD and
SERVE corpora.

Low frequency senses from the SENSEVAL-2 words were filtergidg a 5 percent sense-filter. In these
experiments, we did not select any subset of SENSEVAL-2 warased on the size of training as the
training data for all words will be augmented with WordNebgges. however, we did remove the word
ferret since it only has three test and training instances in tdtalis, we used 72 of the 73 SENSEVAL-2

words in these experiments.

As was the case in previous experiments, the LINE, HARD anB&E corpora were randomly split into
60—40 training—test partitions. Thus, for all the wordstilaéning data consists of the local contexts around
a specific target word as was used in Experiments 1 and 2.I¥imathis experiment we found 10 clusters

for each word.

4.4.2 Results and Analysis

Table 59 shows the F—measure of word sense discriminatiaimed for each word, witfF-gl) and without
(F-nogl) gloss augmentation. Entries in bold type show the expetisnghere gloss augmented feature
vectors resulted in significantly better performance thsingifeature vectors derived strictly from training

data.

Out of the 72 SENSEVAL-2 words, a total of 43 showed improvesh&asures using gloss augmented

feature vectors. There were seven words that showed ndisagrii change, which suggests that only 22
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words showed drop in the F-measure on gloss augmentati@udition, all of these 43 words also showed
improved recall when using gloss augmented feature vecitdngh shows that the number of instances

correctly clustered was increased due to the use of the glagsentation.

Further examination showed that not all of the 43 words thiroved overall showed a corresponding
increase in their precision. This further indicates thatdgloss augmentation not only increased the number
of instances correctly clustered but also increased tlaénommber of instances attempted by the algorithm.
This is because the rise in the total number of instancesadtyrclustered as indicated by the improved
recall, was accompanied by a rise in the total number of m&ta attempted, resulting in relatively steady

precision.

Our hypothesis is that the sparsity in the feature vectothout gloss augmentation left large number
of instances unclustered due to very low levels of simiyawith any of the other instances. We believe
that gloss augmentation increases the likelihood of disodting instances that have a very distinct set
of features that may not be shared by other instances. Theigloss augmentation allowed for a certain
amount of standardization in the feature vectors, whickehthe number of instances that were successfully

clustered.

However, the results fdine, hard and servedo not show any clear improvement when using gloss aug-
mented feature vectors. We believe that this is due to thetfiat most of the words that occur in the
dictionary glosses of these words have already occurrdtesetlarger samples of training data, so the gloss
information is essentially redundant. Thus, we believe ¢iass augmented feature vectors are particularly
useful for situations where unsupervised discriminatiarstbe performed using smaller samples of training

data.
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Table 59:

Experiment 4. F—-measures WiEhgl) and without(F-nogl) gloss augmentation

word F-nogl F-gl | word F-nogl F-gl | word F-nogl F-gl
art.n 40.00 50.95]| authority.n 49.70 40.00 bar.n 54.39 50.44
begin.v 49.69 59.88| blind.a 32.43 45.00| bum.n 60.32 36.36
call.v 35.44 37.11| carry.v 44,74  40.97 chair.n 48.00 71.03
channel.n  45.16 32.8{child.n 56.86 50.91 church.n 41.76 54 .37
circuit.n 42.46 34.24 collaborate.v 40.00 59.09| colourless.a 56.00 58.62
cool.a 31.32 35.56]| day.n 44.15 65.31| detention.n  62.22 4255
develop.v  34.55 39.64| draw.v 41.86 52.38| dress.v 37.89 37.50
drift.v 39.29 46.43| drive.v 45.61 54.54| dyke.n 48.78 60.00
face.v 41.79 77.01| facility.n 43.90 46.00| faithful.a 4242 42.42
fatigue.n 49.18 64.79 | feeling.n 33.90 46.58| find.v 30. 23 41.86
fine.a 41.51 48.21)| fit.a 40.91 40.91 free.a 45.61 47.79
graceful.a 38.89 38.89green.a 56.21 55.0F grip.n 41.46 53.33
hearth.n 57.70 44.90 holiday.n 37.74 44.89| keep.v 35.82 67.50
lady.n 37.34 54.54| leave.v 50.98 39.60 live.v 36.36 31.77
local.a 44.07 41.94 match.v 41.27 52.94| material.n 38.71 41.60
mouth.n 33.71 39.21| nation.n 59.26 76.67 | natural.a 33.07 34.78
nature.n 36.84 33.78aoblique.a 40.00 54.55| play.v 48.72  37.33
post.n 47.70  39.39 pull.v 45.28 44.44 replace.v 38.24 52.38
restraint.n 40.54 35.90see.v 33.34 34.70| sense.n 32.19 39.08
serve.v 50.64 45.98 simple.a 33.96 47.06| solemn.a 25.00 47.06
spade.n 44,90 48.14 | stress.n 42.86 36.0[ strike.v 37.50 40.62
train.v 41.13 41.13 treat.v 47.76  47.37 turn.v 40.00 34.62
use.v 31.20 62.12| vital.a 5.56  5.56| wander.v 30.13 56.41
wash.v 66.67 60.00 work.v 39.21 49.18]| yew.n 56.41 68.19
line.n 43.13 43.04 hard.a 67.25 67.09 serve.v 38.54 36.60
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5 Conclusions

One of the main objectives of this thesis was to determinertipact on word sense discrimination of

different feature types, context representations andering methods.

This thesis shows that there is no unique configuration oicelsahat gives the best results on all datasets.
However, we do make specific recommendations for carryirigd@erimination, based on the nature and

volume of data used for training and clustering.

The following sections summarize what settings achievédésé discrimination under the different scenarios

we considered.

5.1 Smaller Datasets

We observed that smaller amounts of training data lead tdlenfaature sets. First order context repre-
sentations based on smaller feature sets tend to be velgesgiace they are based strictly on features that
appear in the contexts being discriminated. Among the uvarfeatures we employed, we observed that
single token features (e.g., unigrams, co-occurrencef)rpebetter with smaller datasets than multi-token

features (e.g., bigrams), which are less likely to occurdom@text being discriminated.

Feature sets that are both small and sparse make the firsfeatleres a limited presentation of contexts that
does not convey much information about the meaning of tlgeetavord. Similarity measures add an extra
level of feature matching by seeking matching features artbe contexts, which makes the similarity

space representations even more sparse than the corregperdtor space representations. Given such
very sparse and limited information, the agglomerativesteling methods that rely on rigorous pairwise

comparisons among the contexts did not fare very well.

On the other hand, second order context representatiomslirte additional information into the context

vectors by adding feature vectors of contextual words. Thede/representing dimensions of the context
vectors are not required to appear in the contexts of thetavgrd but do appear in the contexts of the
contextual feature words. Hence, the 2nd order contextsttebe more dense, informative and extensive
representations of contexts even with smaller feature ¥étsalso noticed that the indirect representation of

bigrams in second order contexts proves more effective itatiching two word sequences as done by the
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first order contexts. We also observed that the dimenstgnaduction helps in identifying contexts that

use similar or related sets of features rather than lifgralitching text strings.

Considering the smaller number of dimensions in a featueeesphat results from smaller training data,
when combined with the inherent sparsity in natural languagt, we showed that the partitional clustering
approach that directly clusters contexts in vector spaceoe effective than agglomerative clustering in

similarity space.

In summary, with a smaller volume of training and test ddta,decond order context representations using
either bigram or co-occurrence features, when clusterew) u&ctor space hybrid methods like repeated

bisections, tend to achieve better discrimination.

5.2 Larger Datasets

Larger local training data that consists of contexts aroarsgecific target word seems to provide overall
better quality and quantity of features. As the improvedueaselection increases the likelihood of directly
matching these features in the contexts of test instanbedjrst order context representations get richer
and provide some substantial information about the featdieectly observed near the target word in the
contexts. This in turns improves the chances of detectirectisimilarities among the contexts in terms of
the shared features. Under these conditions, we noticédhinaetailed pairwise comparisons done by the
agglomerative clustering algorithm result in better disimation than a hybrid clustering approach such as

Repeated Bisections.

But, we noticed some adverse effects on second order centitkt the additional training data. We believe

this is because they include some extra information intetiméexts by adding co-occurrences of contextual
features. This technique could in fact introduce signifieanounts of noise that in turn can obscure the fine
level distinctions between the contexts. In other wordsemiie first order contexts already have sufficient
information to identify similar contexts, the added inf@&ion about co-occurrences of feature words is not

necessary and in fact can confuse the clustering algorithm.
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5.3 Global Training with Large Generic Text

Our experiments with large global training showed that ésftt perform as well as local training done with
a smaller quantity of data. Global training only seems tosbtive performance of the first order contexts,
especially those that use bigram features collected fromalar sample of local training. In such cases,
we noticed that the larger volume of data gives better featthat improve the first order representations.
It also helped in discriminating instances of words thatehavarge number of senses. In short, we noticed
that global training can only outperform the discriminati@sults obtained with insufficient local training.

In the majority of cases, however, even smaller local trejmroved better than larger global training.

5.4 Comparisons Against a Knowledge—Intensive Approach

We compared our results obtained with a knowledge—leanoappragainst those obtained with a more
knowledge—intensive method that incorporated dictiordafinitions of feature words into contexts. For
each word observed in the context of a test instance, weett@afeature vector of words that co-occur with
that feature word in the training data. we then augmentel fsature vector with words that appear in the
WordNet gloss of the feature word. 2nd order context veatans then computed by averaging such gloss

augmented feature vectors of words found in the contexts.

We found that this gloss augmentation only proved betteages when smaller training data was used for
creating feature vectors, and didn't prove useful in coratidm with larger data. This suggests that the
co-occurrence behavior of words as learned from a large eatcertainly has the potential to outperform

knowledge—intensive methods.
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6 Related Work

There is a long history of research in supervised approacha&srd senselisambiguation Typically these
approaches train a model by presenting it with some numberasfually created sense tagged examples
for a particular word (e.g., [5], [7],[26], [29], [22]). Adtr training, these models are able to assign one of a

predefined set of meanings to newly encountered instancesvofd.

However, word sense discrimination is a different probleRather than trying to assign an instance of
a word to one of a set of possible meanings, it seeks to graggther instances of words that are used
in similar contexts. The motivation behind taking this aggwh is that a predefined set of meanings (as
provided by a dictionary or similar resource) is often tofbexible and limited to account for word usages

in actual text. In addition, sense tagged text only exissniall quantities and is expensive to create.

Methods of discrimination that discover meanings of womdsnf raw text avoid both of those limitations,
and have become more widely studied as the amount and vafietyine text continues to increase. Thus,
word sense discrimination lends itself to unsupervikedwledge learapproaches, while word sense dis-

ambiguation tends to be pursued using harder to obtain re=®sguch as sense tagged text.

The following discussion pays particular attention toieadiscrimination work by Schiitze and by Pedersen
and Bruce. The combination of these two bodies of reseamsiesas the foundation of this thesis. There
is also discussion of the related problems of finding setsafieswith the same or similar meaning, and

bootstrapping approaches that use very small amountsioiigedata to initiate a fully automatic process.

6.1 Word Sense Discrimination

This thesis explores the effect of vector versus similasfigice representations, as well as first order versus
second order features. These issues were raised in twoediffeodies of previous work that provide a
starting point for this thesis. Pedersen and Bruce ([3d]])[8xplored the use of similarity spaces and first
order features, while Schitze ([38], [39]) developed apraach based on vector spaces and second order

features. In this thesis, we seek to compare, contrast,xaddthese methods.

Pedersen and Bruce compare various hierarchical aggltageciustering algorithms, and recommend the

use of McQuitty’s Similarity Analysis [24]. In fact, McQuits method is a form of hierarchical agglom-
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erative clustering that uses the average link criteriatfonc It starts by assuming that each instance is a
separate cluster. It merges together the pair of clustatshéve the highest average similarity value. This
continues until a specified number of clusters is found, dif the similarity measure between every pair of

clusters is less than a predefined cutoff.

Pedersen and Bruce use a relatively small number of first éedéures. They create a dis—similarity matrix
by using the matching coefficient as their criterion. Rathean using the number of features that match,
they used the number of features that didn’t match, and thémts a distance measure. The context of a
target word is represented using localized first order featsuch as collocations and part of speech tags

that occur within one or two positions of the target word.

By way of contrast, Schitze [39] performs discriminatibrotigh the use of a vector based representation.
In fact, he employs two different vectors: the first is a woetter that is based on co—occurrence counts
from a separate training corpus. Each word in this corpuspgessented by a vector made up of the words
with which it co-occurs. These vectors are then reduced wigukar Value Decomposition. Then, each
instance in a test or evaluation corpus is represented bgtanidat is the average of all the vectors of all
the words that make up that instance. Discrimination isi@drout by clustering instance vectors using a

hybrid clustering method that integrates the EM Algorithithvagglomerative clustering.

Below we summarize some of the significant differences iraffpgoaches suggested by Pedersen and Bruce
and by Schutze. In this thesis we carry out experimentsisioéte some of these differences, in order to

determine which techniques are most effective for word eseliscrimination.

Context Representation Pedersen and Bruce represent the context of each testdastama vector of
features that directly occur near the target word in thatimse. We refer to this representation as the first
order context vector. Schitze, by contrast, uses the dewrder context representation that averages the first
order context vectors of individual features that occurrriba target word in the instance. Thus, Schitze
represents each feature as a vector of words that occur éoritext and then computes the context of the
target word by adding the feature vectors of significant @sivords that occur near the target word in that

context.
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Features Pedersen and Bruce use a small number of local featuresnttiatie co—occurrence and part

of speech information near the target word. They selecufeatfrom the same test data that is being
discriminated, which is a common practice in clustering émgral. Schitze represents contexts in a high
dimensional feature space that is created using a separg&dorpus (referred to as the training corpus).

He selects features based on their frequency counts oikelgibod ratios in this corpus.

In this thesis, we adopt Schiitze’s approach and selectrésafrom a separate corpus of training data, in part
because the number of test instances may be relatively amdlinay not be suitable for selecting a good
feature set. In addition, this makes it possible to expl@mations in the training data while maintaining a
consistent test set. Since the training data used in unggpdrclustering does not need to be sense tagged,
in future work we plan to develop methods of collecting versge amounts of raw corpora from the Web

and other online sources and use it to extract features.

Schiltze represents each feature as a vector of words that@ar with that feature in the training data.
These feature vectors are in fact the first order contexovedlf the feature words (and not target word).
The words that co—occur with the feature words form the dsiweTs of the feature space. Schiitze reduces
the dimensionality of this feature space using Singulau®¥ddecomposition, which is also employed by
related techniques such as Latent Semantic Indexing [dDLatent Semantic Analysis [19]. SVD has the
effect of converting a word level feature space into a cont®apel semantic space that smoothes the fine

distinctions between features that represent similaretsc

Clustering Space Pedersen and Bruce represent instances in a (dis)simitguéice where each instance
can be seen as a point and the distance between any two sodrfisriction of their mutual (dis)similarities.
The (dis)similarity matrix showing the pair-wise (dis)sianities among the instances is given as the input
to the agglomerative clustering algorithm. The contexiugrdiscrimination method used by Schitze, on
the other hand, operates on the vector representationstahites and thus works in vector space. Also he
employs a hybrid clustering approach which uses both aroawghative and the Estimation Maximization

(EM) algorithm.

While the focus of this thesis has been on Pedersen and Bandepn Schiitze, there have been other
approaches to purely unsupervised word sense discrimmat-or example, [13] describe a method for

discriminating among verb senses based on determininghwitians co—occur with the target verb. Collo-
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cations are extracted which are indicative of the sense eflalvased on a similarity measure they derive.

6.2 Finding Sets of Related Words

Finding sets of related words is a close cousin to the prolobeword sense discrimination. The objective
is to identify words such agunandpistol that are often used in the same context, and have esseftially
same meaning. While this is not identical to word sense idisigation, the fact that it is based on finding

words that occur in similar contexts makes it very closelgtesl.

Some work on this problem has focused on finding distribatioagularities among word occurrences in
raw corpora, and grouping together those words that occsimiitar contexts. These approaches are based
purely on lexical information, and well known examples ud# [6] and [32]. This style of approach is
most closely related to our own, in that only informationnfreaw corpora is employed in making these

distinctions.

Other approaches incorporate syntactic information irfah@ of part of speech tags or partial parses, and
identify words that occur in similar contexts based on a doatipn of textual and syntactic information.
Examples include [14], [23], [8], and [28]. The latter twopapaches go beyond simply identifying sets of
related words and attempt to group those sets into a higrafatoncepts, where more specific concepts are

a form of the more general concepts.

Finally, there are approaches that are initialized withva $eed concepts, and find those words that are
related to the given seeds (e.qg., [37], [36], [33]). For eglygun might be given as a seed, and the method
would find pistol, flintlock andartillery. In general these approaches utilize a combination of &xnd

syntactic information.

6.3 Bootstrapping Approaches

There is also research at the intersection of supervisedrssupervised methods. In fact this is more closely
related to supervised learning, since the objective resrtaigreate a classifier which will assign an instance
of a word to one of a predefined set of possibilities. Howeabhese methods are often minimally supervised,

and use a small amount of training data in order to autoniticeeate more training data, or in other words
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bootstrapa large sample of training data from a much smaller samplemdes-tagged data.

The best known example of such an approach is [43], who desca method that automatically identifies
collocations that are indicative of the sense of a word, aed those to iteratively label more examples. For
example, in a large corpus that contains instancgdantt, it might be that the collocationmanufacturing
plant andflowering plantwould be identified using standard statistical techniquefiuman judge could
easily determine that these are associated with two digténses oplant, and easily label all occurrences
of plantin each collocation in the corpus with the appropriate sefiben these examples could be fed back

into the learning algorithm, and the resulting model cowddubed to create more training examples.

108



7 Future Work

There are many issues that arose during this thesis tha¢sufygure directions for research. These include
ideas to improve existing techniques, as well as some ndatizars that might lead to better discrimination.
In addition, we have realized that our methodology is suitedl broad range of problems that extends well

beyond word sense discrimination. What follows are our gkan future work.

Training The rather limited effectiveness of global training suggedbkat we need to revise our feature
selection and dimensionality reduction strategies so agdiml the noise that comes from global data. Also,
it encourages us to devise techniques for collecting lamgeunts of local training data. In the near future,
we will try to use the local contexts around a specific targetdifor training data as collected from some

large text collection like the English Gigaword Corpus, Brégish National Corpus or the World Wide Web.

Since pure global training seems to have limitations, wé alglo try to combine it with available smaller

local training to determine if that proves better than poiel or pure global training approaches.

In short, the possible variations in training that we woulll ke to pursue are local training boosted with
global training, and enhanced local training by colleclimzal contexts around the target word from various

sources of large text collections.

We also plan to make a more systematic comparison of our lketumel-lean approach against the knowledge—
intensive approach, as taken during the gloss experim@&his.should help determine if the corpus based

approach to discrimination is better than the dictionargelobapproach under any circumstances.

Features In the future, we will employ richer feature types that use plart of speech or morphology of
words and do not just rely on their surface forms. Also, wé &xplore techniques like stemming and fuzzy

feature matching that will hopefully result into richer ¢ext representations.

Context Representations This thesis showed that first order context representadomsnore suitable for
large feature sets and larger amounts of training data vgbibend order contexts are more effective when
the available training data is small. This gives us an idassofg backoff models that move from first order

to second order representation for very sparse contextsvaltel also like to combine first and second order
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context representations in a way that will essentially reédmth the feature word and its co-occurrences in

the context vectors.

SVD We have not yet conducted any experiments to test if the diroeality reduction has a measurable
impact on results. In future, we plan to answer this quedtiprsystematically comparing the results of
discrimination with and without using SVD. We will also daténe the effect of using different reduction

factors while carrying out SVD.

Clustering In this thesis, we avoid exactly specifying the number ofte#ts we expect to find by creating
some arbitrarily large number of clusters and then ignotiregextra clusters during evaluation. We under-
stand that this logic results in very low accuracy valuebéf éxtra clusters contain a significant number of

the instances to be discriminated.

In future, we plan to merge such extra clusters with one ofahelled clusters that shares maximum inter-
cluster similarity with that extra cluster. However, thisedn’t address the problem of creating the right
number of clusters at the first place and without using thevkdge of true classification. One possible
solution could be to simply run clustering multiple timesck with a different number of clusters to be
found, and then pick the solution that gives the overall mmaxn intra—cluster similarity and minimum

inter—cluster similarity.

Cluster Labeling We have developed a methodology that creates clusters tahoes of a target word
that refer to the same sense. We currently do not make any@tte identify which sense each cluster
represents. In future, we plan to attach some descriptheldao the discovered clusters that indicate the
sense these clusters represent. Such labels can be createtthé features shared by instances in the same
cluster and those not shared by instances in other clu@grsomparing such labels with actual dictionary
senses of a word, we can determine how well a knowledge—{gamoach can perform fully automatic word
sense disambiguation without relying on any manually aatedttraining data or other external knowledge

source.
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Applications Our focus in this thesis has been on word sense discrimmatitowever, we have come
to realize that the idea of clustering similar text instanceuld find direct applications in a variety of
natural language processing tasks like text summarizasgmonymy identification, document clustering

and indexing, etc.

There are a number of applications that we would like to exgplio the near future.

e Automatic Email Foldering

In the same way that wwe cluster contexts that contain afspémiget word, we can treat each email
as a single context and cluster a collection of emails basgtiesimilarity of their contents. In this
case there would not be a specific target word, rather areesttiail message would be both the target
and the context. The development of such a technique wipi teelautomatically organize a large

corpus of emails based on their content.

e Name Discrimination

This is the task of trying to identify the different peoplesasiated with the same name. If we think of
the actual people with the same name as different meaningsiohmbiguous name, we can see that
this is essentially the word sense discrimination probl&iven a number of text instances that refer
to an ambiguous name, our algorithm will try to automaticaftoup together all instances that refer
to the same person. For example, if we search Google for "&elgfi2en”, we hit many pages some
of which refer to Prof. Ted Pedersen at University of Minrtas®uluth, while, others to the author
of children’s books like "Internet for Kids”, "Gipsy World"'Ghost on the Net”, etc. Given these
two different personalities of the same name, we can applyisarimination techniques to identify

which pages refer to the same person.

e Ontology Acquisition

Our current strategy is to cluster instances of the same woodder to identify different senses of
that word. The other possibility would be to cluster insesof multiple words in order to find the
sets of related words similar to the work done by [23], [28]e Walize that, a standard hierarchical
clustering will give us an hierarchy of word clusters thatsh the different clusters to which a word

belongs at various levels. Such an hierarchy can be in fagtad as an ontology constructed from
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purely raw text. In future, we plan to analyze and evaluatdh sautomatically constructed ontology

and find its applications in some standard NLP problems.

Synonymy Identification

This is the problem of identifying words that are synonynigur method is used to cluster instances
of different words that are synonyms, we hope to see a cltisieégroups the instances of two different
words that use the same sense. In short, by clustering@iffeontexts in which wordsat andclub

are used, we should be able to get a single cluster contadtiiimstances of these words that refer to

the sense aftick used for hitting
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