Chemistry 2541

Fall Semester 2010; Midterm 2 Exam

November 10, Wednesday, 1:00 to 1:50 pm

This exam has 8 problems (100 pts) on 7 pages. Make sure your copy is complete and correct.

Printed Name (LAST, First) \qquad

Your graded exams will be available Friday, November 12, before class.

Chemistry 2541

Fall 2010; Midterm 2 Exam

This exam has 8 problems on 7 pages. Make sure your copy is complete and correct.

Printed Name (Last, First)

Scores:

Problem 1 \qquad
Problem 2 \qquad
Problem 3 \qquad
Problem 4 \qquad
Problem 5 \qquad
Problem 6 \qquad
Problem 7 \qquad

Problem 8 \qquad

Total: \qquad

1. (15) Answer the questions on mechanism of the following reactions.
(a) Which one of the following four schemes (A-D) represents a step in the mechanism of the reaction in the box (circle the correct answer; 5 pts):

(b) Circle the structure of the reaction intermediate for the reaction in the box (circle the correct answer; 5 pts):

(c) Draw 4 curved arrows and one formal charge missing in the following mechanism (5 pts; 1 pt each missing fragment):
: $\ddot{\mathrm{Br}} \mathrm{r}$:

$+\mathrm{Br}-\mathrm{Br} \longrightarrow$

\longrightarrow

2. (15) Answer the following questions on the IUPAC nomenclature:
(a) Circle the correct name for each of the compounds shown in the boxes (3 pts each):

(E)-1,2-diisopropyl-3-methyl-1,3-butadiene
(Z)-3-isopropyl-2,5-dimethyl-1,3-hexadiene
(Z)-3-vinyl-2,5-dimethyl-3-hexene
(E)-3-isopropyl-2,5-dimethyl-1,3-hexadiene
(Z)-1,2-diisopropyl-3-methyl-1,3-butadiene
(E)-3-vinyl-2,5-dimethyl-3-hexene

(Z)-5-ethyl-1,3-octadiene

1-ethyl-3-vinylcyclopentene
1-ethyl-4-methylenecyclopentene
1-ethyl-3-methylenecyclopentene
1-ethyl-1,3-cyclopentadiene
(E)-1-ethyl-1,4-cyclopentadiene

(E)-2,5-dibromo-3-ethyl-2-pentene
(E)-2,5-dibromo-3-ethyl-2-hexene
(Z)-1,4-dibromo-3-ethyl-3-pentene

1,4-dibromo-2-ethyl-1-methyl-1-butene
(Z)-2,5-dibromo-3-ethyl-2-pentene
(E)-1,4-dibromo-3-ethyl-3-pentene
(b) Finish drawing the line-angle structure of each of the following compounds in the provided box by placing missing fragments on the numbered carbons (1 pt each missing fragment):

3-vinylcyclohexene
(2 pts)

(E)-1-chloro-2,3-dimethyl-2-pentene

$$
(4 \mathrm{pts})
$$

3. (9 pts) Answer questions (a)-(c) about the following Bronsted-Lowry acid-base reaction by placing the letters A-D on the answer lines.

A
$\mathrm{pK}_{\mathrm{a}}=25$

B
C
D
$\mathrm{pK}_{\mathrm{a}}=9.3$
(a) (3 pts) Between structures \mathbf{A} and \mathbf{D} the weaker acid is: \qquad
(b) (3 pts) The conjugate acid of compound \mathbf{B} is: \qquad
(c) (3 pts) The species that predominate at equilibrium are (two letters): \qquad
4. (16, 4 pts each) Circle the structure of the main product in each of the following reactions:

5. (16) Finish drawing the structures of main products in these reactions by placing appropriate substituents (including H) in the boxes on the bonds (2 pt each missing part).

6. (8,2 pts each box) Place in each box the molecule of a reagent that is required to perform each of the following reactions:

2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$

2

7. (5 pts) Arrange the following compounds according to their acidity:
(1) $\mathrm{CH}_{3} \mathrm{NHCH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(4) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(5) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$

8. (16, 4 pts each) For each of the following questions (a)-(d) circle the item that is the correct answer.
(a) Which one of the following compounds has the highest acidity?
$\mathrm{LiBr} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{Na}_{2} \mathrm{SO}_{4} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CLi} \quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2} \quad \mathrm{CH}_{4}$
(b) Which one of the following carbocations is the most stable?

(c) Which one of the following compounds is the strongest base?

Na^{+}

CH_{4}
NaI $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(d) Which of the following alkenes undergoes the least exothermic hydrogenation (has the lowest heat of hydrogenation)?

1-butene cis-2-butene trans-2-butene 2,3-dimethyl-2-butene 2-methyl-2-butene

