Chemistry 2542

Fall Semester 2012; Midterm 3 Exam

December 7 (Friday), 11:00 to 11:50 am

This exam has 5 problems (100 pts) on 7 pages. Make sure your copy is complete and correct.

Printed Name (Last, First) \qquad

Your graded exams will be available Monday, December 10, before class.

Chemistry 2542

Fall 2012; Midterm 3 Exam

This exam has 5 problems on 7 pages. Make sure your copy is complete and correct.

Printed Name (Last, First)

Scores:

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Total: \qquad

1. ($\mathbf{1 5} \mathbf{~ p t s}$) Answer the questions on mechanisms of the following reactions.
(a) Which one of the following four schemes (A-D) gives the best representation of a step in the mechanism of the reaction in the box (circle the correct answer; $\mathbf{5} \mathbf{~ p t s}$)

(b) Circle the most important resonance contributor of the intermediate in the reaction shown in the box that explains the para-directing effect of the OH group ($\mathbf{5} \mathbf{~ p t s}$):

(c) Draw 4 curved arrows and show 1 charge missing in the following mechanism ($\mathbf{5}$ pts; 1 pt each):

2. ($\mathbf{1 5} \mathbf{~ p t s}$) Answer the following questions.
(a) Circle the structure of the intermediate in this reaction ($\mathbf{5} \mathbf{~ p t s}$):

(b) Circle the structure of the most important resonance contributor of the intermediate in the following reaction ($\mathbf{5} \mathbf{~ p t s) : ~}$

(c) (5 pts) Arrange the following compounds in order of increasing basicity (place a number 1-5 in the appropriate box, 1 pt each box):
(1) ethylamine; (2) diethylamine; (3) aniline; (4) m-nitroaniline; (5) p-nitroaniline
weakest base
\square $<$ \square $<$ \square $<\square$
strongest base
3. (20 pts) Answer the following questions:
(a) Circle the name of a major product in each of the following reactions (4 pts each):

2-bromo-1-chloro-4-nitrobenzene 3-bromo-4-chlorobenzonitrile

1-bromo-4-nitrobenzene $\quad p$-bromotoluene $\quad p$-nitrotoluene

2-chloro-4-nitrophenol m-chlorophenol p-chlorophenol p-nitrophenol $\quad m$-nitrophenol $\quad 2$-chloro-5-nitrophenol
?

cis-4-aminocyclohexanone	cis-4-bromocyclohexanamine
trans-4-aminocyclohexanol	4-aminophenol
cis-4-aminocyclohexanol	trans-4-aminocyclohexanone

(b) Which statement regarding the basicity of the aromatic heterocycle (shown in the box) is correct? (circle the answer, $\mathbf{4} \mathbf{~ p t s}$):
(A) All nitrogen atoms are strongly basic

(B) The nitrogen $\mathrm{N} \mathbf{1}$ is not basic, $\mathrm{N} \mathbf{2}$ and $\mathrm{N} \mathbf{3}$ are basic
(C) The nitrogen $\mathbf{2}$ is more basic, $\mathrm{N} \mathbf{1}$ and $\mathrm{N} \mathbf{3}$ are not basic
(D) The nitrogens $\mathrm{N} \mathbf{2}$ and $\mathrm{N} \mathbf{3}$ are not basic, $\mathrm{N} \mathbf{1}$ is basic
(E) Neither nitrogen atoms are basic
4. (22 pts) (a) Finish drawing the structure of products in these reactions by placing appropriate substituents (including H) in the boxes on the bonds (2 pt each missing part; total $\mathbf{1 0} \mathbf{~ p t s}$):

(b) Circle the structure of a major product in each of the following reactions (4 pts each):

5. (28 pts) Answer the following questions:
(a) (12 pts) Place in each box the molecule of a reagent that is required to perform each of the following reactions (2 pts each box):

(b) (4 pts) Which one of the following compounds is the least reactive in the Electrophilic Aromatic Substitution reaction?
aniline chlorobenzene nitrobenzene methoxybenzene toluene phenol
(c) (4 pts) Which one of the following compounds is the most reactive in the Nucleophilic Aromatic Substitution reaction with NaOH in water at room temperature?
chlorobenzene iodobenzene 1 -chloro-2,4,6-trinitrobenzene 2,4-dinitroaniline 1,3,5-trinitrotoluene
(d) (4 pts) Circle the group that is $\boldsymbol{o}, \boldsymbol{p}$-directing in the aromatic electrophilic substitution:

$$
\mathrm{H}_{3} \mathrm{~N}^{+}-\quad-\mathrm{CN} \quad \stackrel{+}{-\mathrm{SPh}_{2}} \quad{ }_{-}-\mathrm{CF}_{3} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}-\quad{ }_{-} \mathrm{NO}_{2} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{+}-\quad-\mathrm{CO}_{2} \mathrm{CH}_{3}
$$

(e) (4 pts) Circle the group that is \boldsymbol{m}-directing in the aromatic electrophilic substitution:
$\mathrm{H}_{2} \mathrm{~N}-\quad-\mathrm{Cl} \quad-\mathrm{SPh} \quad-\mathrm{OCH}_{3} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{P}-\quad-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \quad-\mathrm{SO}_{3} \mathrm{H} \quad-\mathrm{CH}_{2} \mathrm{CH}_{3}$

