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Abstract: Since its introduction by Owen (1988, 1990), the empirical likelihoodmethod has been extensively

investigated and widely used to construct confidence regions and to test hypotheses in the literature. For

a large class of statistics that can be obtained via solving estimating equations, the empirical likelihood

function can be formulated from these estimating equations as proposed by Qin and Lawless (1994). If

only a small part of parameters is of interest, a profile empirical likelihood method has to be employed

to construct confidence regions, which could be computationally costly. In this article the authors propose

a jackknife empirical likelihood method to overcome this computational burden. This proposed method

is easy to implement and works well in practice. The Canadian Journal of Statistics 39: 370–384; 2011
© 2011 Statistical Society of Canada

Résumé: Depuis leur introduction par Owen (1988, 1990), la méthode de vraisemblance empirique a été

étudiée de façon exhaustive et elle est beaucoup utilisée dans la littérature pour construire des régions de

confiance et confronter des hypothèses. Pour une grande classe de statistiques obtenues en résolvant des

équations d’estimation, la fonction de vraisemblance empirique peut être formulée à partir de ces équations

d’estimation telles que proposées par Qin et Lawless (1994). Lorsqu’uniquement une petite partie des

paramètres sont d’intérêt, une méthode de vraisemblance empirique de profil doit être utilisée pour con-

struire une région de confiance ce qui peut s’avérer très coûteux à évaluer numériquement. Dans cet article,

les auteurs proposent une version jackknife de la méthode de vraisemblance empirique pour surmonter les

coûts de calculs. Cetteméthode est facile à implanter et elle fonctionne bien en pratique. La revue canadienne
de statistique 39: 370–384; 2011 © 2011 Société statistique du Canada

1. INTRODUCTION

Empirical likelihoodmethodwas introducedbyOwen (1988, 1990) to construct confidence regions

for themeanof a randomvector. Like the bootstrap and jackknifemethods, the empirical likelihood

method is a nonparametric one. Without assuming a family of distributions for the data, the

empirical likelihood ratio statistics can be defined to share similar properties as the likelihood ratio

for parametric distributions. For instance, the empirical likelihood method produces confidence

regions whose shape and orientation are determined entirely by the data. In comparison with the

normal approximation method and the bootstrap method for constructing confidence intervals,

the empirical likelihood method does not require a pivotal quantity, and it has better small sample

performance (see Hall & La Scala, 1990).
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As an effective way for interval estimation and goodness-of-fit test, the empirical likelihood

method has been extended and applied in many different fields such as regression models (Chen

& Van Keilegom, 2009), quantile estimation (Chen & Hall, 1993), additive risk models (Lu &

Qi, 2004), two-sample problems (Zhou & Liang, 2005; Cao & Van Keilegom, 2006; Keziou &

Leoni-Aubin, 2008; Ren, 2008), time series models (Hall & Yao, 2003; Chan, Peng & Qi, 2006;

Nordman&Lahiri, 2006; Chen&Gao, 2007;Nordman, Sibbertsen&Lahiri, 2007;Guggenberger

& Smith, 2008), heavy-tailed models (Lu & Peng, 2002; Peng, 2004; Peng & Qi, 2006a, b), high

dimensional data (Chen, Peng & Qin, 2009), and copulas (Chen, Peng & Zhao, 2009).

A common feature in employing the empirical likelihood method is to work with linear

constraints such as linear functionals, and a powerful way in formulating the empirical likelihood

ratio statistic is via estimating equations as in Qin and Lawless (1994). When the constraints

involve nonlinear equations, an important trick is to transform these nonlinear constraints to

some linear constraints by introducing some link variables. After this transformation, a profile

empirical likelihood method is employed. For example, if one wants to construct an empirical

likelihood confidence interval for the variance θ = E{X−EX}2, one can introduce a link variable
β =E(X) and then formulate the empirical likelihood by using equations E(X)= β and E(X2) =
θ + β2. Some other examples include the study of ROC curves (Claeskens et al., 2003), copulas

(Chen, Peng & Zhao, 2009), and difference of quantiles (Zhou & Jing, 2003; Shen & He, 2007).

Apparently these extra constraints add more computational burden to the empirical likelihood

method. Another computational difficulty arises when the profile empirical likelihood method

involves a large number of nuisance parameters.

Suppose X1, . . . , Xn are independent random vectors with common distribution function F
and there is a q-dimensional parameter θ associated with F. Let yT denote the transpose of the

vector y and

G(x; θ) = (g1(x; θ), . . . , gs(x; θ))
T

denote s(≥q) functionally independent functions, which connect F and θ through the equations

EG(X1; θ) = 0. Write θ = (αT, βT)T, where α and β are q1-dimensional and q2-dimensional

parameters, respectively, and q1 + q2 = q. In order to construct confidence regions for α, Qin and

Lawless (1994) proposed to use the following profile empirical likelihood ratio

l(α) = 2lE((α
T, β̂T(α))T)−2lE(θ̃), (1)

where lE(θ) = ∑n
i=1 log{1 + tT(θ)G(Xi; θ)}, t = t(θ) is the solution of the following equation

0 = 1

n

n∑
i=1

G(Xi; θ)

1 + tTG(Xi; θ)
(2)

θ̃ = (α̃T, β̃T)T minimizes lE(θ) with respect to θ, and β̂(α) minimizes lE((α
T, βT)T) with respect

to β for fixed α. It has been shown that l(α0) converges in distribution to χ2
q1
under some regularity

conditions, where α0 denotes the true value of α. For the second order properties of the empirical

likelihood method based on estimating equations, we refer to Chen and Cui (2007).

The computational complexity in using the profile empirical likelihood method comes from

computing lE((α
T, β̂T(α))T). When the nuisance parameter β is known, one can simply replace

β̂T(α) and β̃ in (1) by the true value of β so that the computation is reduced significantly. In order

to avoid computing lE((α
T, β̂T(α))T), one may choose to replace β̂T(α) by some other different

estimator, for example, solving q2 equations of n−1
∑n

i=1 G(Xi; θ) = 0. Although this reduces

computation especially when one can find an explicit estimator of β in terms of the sample and

α, Wilks’ theorem does not hold, that is, l(α0) does not converge in distribution to χ2
q1
. Instead,
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l(α0) generally converges in distribution to a weighted sum of independent chi-square random

variables; see Hjort, McKeague and Van Keilegom (2009). Since the weights in the limit have

to be estimated, this empirical likelihood method does not preserve the important properties of

the standard empirical likelihood method: self-studentization, automatically determined shape of

confidence region, and Bartlett correction. Therefore, it is of importance to develop an empirical

likelihood method which has a chi-square limit and is computationally efficient than the pro-

file empirical likelihood method especially when the number of nuisance parameters is large.

Moreover, when some estimating equations involve U-statistics, the profile empirical likelihood

method is extremely complicated.

Motivated by the recent study on using jackknife empirical likelihood method to deal with

nonlinear constraints in U-statistics (Jing, Yuan & Zhou, 2009), we propose a jackknife empirical

likelihoodmethod to construct confidence regions for the interesting parameterαwith the nuisance

parameter β being simply replaced by some estimator. The jackknife empirical likelihood ratio

statistic is obtained by applying the standard empirical likelihood method to the jackknife pseudo

sample. The jackknife method was originally used to estimate the variance of a statistic and

to construct bias-corrected estimators of parameters. See, for example, Shao and Tu (1995) for

details. The proposed jackknife empirical likelihood method allows us to compute the nuisance

parameters simply through a subset of estimating equations and yet still retains the attractive

chi-square limiting distribution for the empirical likelihood ratio.

We organize this article as follows. In Section 2, the new methodology and main results are

given. Section 3 presents a simulation study. Section 4 presents two case studies of financial

applications. To save space, an outline of proofs is given in the Appendix and detailed proofs can

be found in the technique report, which is available at http://people.math.gatech.edu/∼peng/.

2. METHODOLOGY AND MAIN RESULTS

As in the introduction, let G(x; θ) = (g1(x; θ), . . . , gs(x; θ))
T denote s(≥q) functionally inde-

pendent functions with EG(X1; θ0) = 0, where θ0 = (αT
0 , βT

0 )
T denotes the true value of θ =

(αT, βT)T, and α and β are q1-dimensional and q2-dimensional parameters, respectively. Note

that only the parameter α is of interest under consideration. To remove the nuisance parameter

β, we propose to first estimate it from some q2 estimating equations, and then work with the

remaining s−q2 equations, where β is replaced by the obtained estimator. The details are as

follows:

Define

Ga(x;α, β) = (g1(x;α, β), . . . , gs−q2 (x;α, β))T

and

Gb(x;α, β) = (gs−q2+1(x;α, β), . . . , gs(x;α, β))T

Without loss of generality, we solve the last q2 equations of n−1
∑n

i=1 G(Xi; θ) to get an

estimator for β. That is, β̃(α;X) is the solution to

1

n

n∑
i=1

Gb(Xi;α, β) = 0 (3)
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with respect to β for each fixed α, where X = (X1, . . . , Xn)
T. Obviously, the best choice of the

q2 equations is to have explicit formula for β̃(α;X), if possible. Set

Tn(α) = 1

n

n∑
i=1

Ga(Xi;α, β̃(α,X))

and let β̃(α;X−i) denote the solution to the equations

1

n−1

n∑
j=1,j �=i

Gb(Xj;α, β) = 0 (4)

with respect to β for each fixed α, where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)
T. Similarly,

define

Tn,−i(α) = 1

n−1

n∑
j=1,j �=i

Ga(Xj;α, β̃(α;X−i)).

Then the jackknife pseudo sample is defined as

Yi(α) = (Yi,1(α), . . . , Yi,s−q2 (α))
T = nTn(α)−(n−1)Tn,−i(α) for i = 1, . . . , n

As in Tukey (1958), one expects that Y ′
i s are approximately independent. This motivates us

to apply the standard empirical likelihood method to the jackknife sample Y1(α), . . . , Yn(α)

for constructing empirical likelihood confidence regions for α. Hence we define the jackknife

empirical likelihood function as

LJ (α) = sup

{
n∏

i=1

(npi) :

n∑
i=1

pi = 1,

n∑
i=1

piYi(α) = 0, p1 ≥ 0, . . . , pn ≥ 0

}

It follows from the Lagrange multiplier technique that the above maximization is achieved at

pi = n−1{1 + λTYi(α)}−1 and the log empirical likelihood ratio �J (α) = −logLJ (α) is given by

�J (α) =
n∑

i=1

log{1 + λTYi(α)} (5)

where λ = λ(α) satisfies

1

n

n∑
i=1

Yi(α)

1 + λTYi(α)
= 0. (6)

Before we present our main results, we first list the assumptions we need. For this purpose,

denote

∂y

∂x
=

(
∂yi

∂xj

)
1≤i≤m,1≤j≤n
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for y = (y1, . . . , ym)
T and x = (x1, . . . , xn)

T, and define

α̂ = argmin�J (α), � = (E{gk(X1;α0, β0)gl(X1;α0, β0)})1≤k,l≤s = (σk,l)1≤k,l≤s,

�1 = E
{

∂
∂β

Gb(X1;α0, β0)
}

, �2 = E
{

∂
∂α

Gb(X1;α0, β0)
}
,

�3 = E
{

∂
∂α

Ga(X1;α0, β0)
}−E

{
∂
∂β

Ga(X1;α0, β0)
}

�−1
1 �2

and �∗ = (σ∗
k,l)1≤k,l≤s−q2 where

σ∗
k,l = σk,l−E

{
∂
∂β

gk(X1;α0, β0)
}

�−1
1 (σs−q2+1,l, . . . , σs,l)

T

− E
{

∂
∂β

gl(X1;α0, β0)
}

�−1
1 (σs−q2+1,k, . . . , σs,k)

T

+ E
{

∂
∂β

gk(X1;α0, β0)
}

�−1
1 (σij)s−q2+1≤i,j≤s�

−1
1 E

{
∂

∂βT gl(X1;α0, β0)
}

Some regularity conditions are as follows:

• (A1) There is a neighborhood of α0 and β0, say
α0 × 
β0 , such thatGb(x;α, β) are continuous

function of α∈
α0 and β∈
β0 for all x, and supα∈
α0
,β∈
β0

‖Gb(x;α, β)‖3 ≤ K(x) for some

function K satisfying that EK(X1) < ∞;

• (A2) For each α∈
α0 , there is a function β(α)∈
β0 such that EGb(X1;α, β(α)) = 0;

• (A3)
∥∥∥ ∂

∂β
Gb(x;α, β)

∥∥∥3,∥∥∥ ∂2

∂βT∂β
gl(x;α, β)

∥∥∥3, and ∣∣∣ ∂3

∂βi∂βj∂βm
gl(x;α, β)

∣∣∣ for l = s−q2 + 1, . . . , s,

i, j, m = 1, . . . , q2 are bounded by K(x) uniformly in α∈
α0 and β∈
β0 ;

• (A4) β(α) defined in (A2) has continuous first derivatives;

• (A5)
∥∥ ∂

∂α
Gb(x;α, β)

∥∥3 and
∣∣∣ ∂3

∂αi∂βj∂βm
gl(x;α, β)

∣∣∣ for l = s−q2 + 1, . . . , s, i = 1, . . . , q1,

j, m = 1, . . . , q2 are bounded by K(x) uniformly in α∈
α0 and β∈
β0 ;

• (A6) Assume �1 is invertible, �* is positive definite and �3 has rank q1;

• (A7)
∥∥∥ ∂

∂β
Ga(x;α, β)

∥∥∥, ‖Ga(x;α, β)‖3,
∣∣∣ ∂3

∂αk∂βj∂βm
gl(x;α, β)

∣∣∣, and
∣∣∣ ∂3

∂βi∂βj∂βm
gl(x;α, β)

∣∣∣ for

i, j, m = 1, . . . , q2, k = 1, . . . , q1, and l = 1, . . . , s−q2 are bounded by K(x) uniformly in

α∈
α0 and β∈
β0 .

The following two propositions show the existence and some properties of β̃(α;X),

β̃(α0;X−i), and α̂.

Proposition 1. (i) Under conditions (A1) and (A2), with probability one, there exist solutions
β̃(α;X)∈
β0 and β̃(α;X−i)∈
β0 to (3) and (4), respectively, such that

β̃(α;X)−β(α) = o(1) and max
1≤i≤n

∥∥β̃(α;X−i)−β(α)
∥∥ = o(1) (7)

almost surely for each α∈
α0 .(ii) Under conditions (A1)–(A3), we have

β̃(α0;X)−β0 + �−1
1

1

n

n∑
i=1

Gb(Xi;α0, β0) = Op(n
−1), (8)

max
1≤i≤n

∥∥∥∥∥∥β̃(α0;X−i)−β0 + �−1
1

1

n−1

n∑
j=1,j �=i

Gb(Xj;α0, β0)

∥∥∥∥∥∥ = Op(n
−1) (9)
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max
1≤i≤n

∥∥∥β̃(α0;X)−β̃(α0;X−i) + �−1
n1 Dn(i)

∥∥∥ = op(n
−3/2) (10)

where

�n1 = 1

n

n∑
j=1

∂

∂β
Gb(Xj;α0, β̃(α0;X)), Dn(i) = (Dn,s−q2+1(i), . . . , Dn,s(i))

T

and

Dn,l(i) = 1
2
n−1GT

b (Xi;α0, β0)�
−1
1 E

{
∂2

∂βT ∂β
gl(X1;α0, β0)

}
�−1

1 n−1Gb(Xi;α0, β0)

+ n−1gl(Xi;α0, β0)−n−1
{

∂
∂β

gl(Xi;α0, β0)
}

�−1
1

1
n−1

n∑
j=1

Gb(Xj;α0, β0)

+ n−1
{

∂
∂β

gl(Xi;α0, β0)
}

�−1
1

1
n−1

Gb(Xi;α0, β0)

(iii) Under conditions (A1)–(A5), we have{
max1≤i≤n

∥∥∥ ∂
∂α

β̃(α0;X−i) + �−1
1 �2

∥∥∥ = Op(n
−1/2),∥∥∥ ∂

∂α
β̃(α0;X) + �−1

1 �2

∥∥∥ = Op(n
−1/2)

(11)

and

max
1≤i≤n

∥∥∥∥ ∂

∂α
β̃(α0;X)− ∂

∂α
β̃(α0;X−i) + �−1

1 Ai

∥∥∥∥ = op(n
−1) (12)

where Ai = (as−q2+1(i), . . . , as(i))
T and

aTl (i) = − 1
n
GT

b (Xi;α0, β0)�
−1
1 E

{
∂2

∂βT∂α
gl(X1;α0, β0)

}
+ 1

n
∂
∂α

gl(Xi;α0, β0)

+ 1
n
GT

b (Xi;α0, β0)�
−1
1 E

{
∂2

∂βT∂β
gl(X1;α0, β0)

}
�−1

1 �2

− 1
n

∂
∂β

gl(Xi;α0, β0)�
−1
1 �2

Proposition 2. Under (A1)–(A7), with probability tending to one, �J (α) attains its minimum
value at some point α̂ in the interior of the ball ‖α−α0‖ ≤ n−1/3, and α̂ and λ̂ = λ(α̂) satisfy

Q1n(α̂, λ̂) = 0 and Q2n(α̂, λ̂) = 0

where

Q1n(α, λ) = 1

n

n∑
i=1

Yi(α)

1 + λTYi(α)

and

Q2n(α, λ) = 1

n

n∑
i=1

1

1 + λTYi(α)

{
∂

∂α
Yi(α)

}T

λ

Next we show that Wilks’ theorem holds for the proposed jackknife empirical likelihood

method.
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Theorem 1. Under conditions (A1)–(A7), we have LR(α0) := 2�J (α0)−2�J (α̂) converges in
distribution to χ2

q1
, where α̂, β̃(α;X) and β̃(α;X−i) are given in Propositions 1 and 2.

Based on Theorem 1, an asymptotically accurate 100γ% confidence region for α is given by

Iγ = {α : LR(α) ≤ χ2
q1
(γ)}

where χ2
q1
(γ) is the γ quantile of a χ2 distribution with q1 degrees of freedom.

Remark 1. When s= q, we have �J (α̂) = 0. Moreover, when β̃(α;X) has an explicit formula

in terms of the sample X and α, the computation of the proposed jackknife empirical likelihood

method is only slightly heavier than the standard empirical likelihoodmethod. Indeed, the software

R package for the empirical likelihood method can be employed as in our simulation study.

Remark 2. If one is interested in a part of α = (α̃T
1 , α̃T

2 )
T, say α̃1, then we can show that

2minα̃2 �J (α)−2�J (α̂) converges in distribution to a chi-square limit with the degrees of freedom

being the length of α̃1. This method may be called jackknife profile empirical likelihood method,

which is appealing when a part of nuisance parameters can be solved explicitly.

Remark 3. When equations (3) are independent of α, then regularity conditions involving the

partial derivatives of Gb with respect to α can be removed.

3. SIMULATION STUDY

Suppose the random vector (X, Y) has marginal distribution functionsF1,F2 and copulaC(x, y) =
P(F1(X) ≤ x, F2(Y ) ≤ y). In fitting a parametric family to the copula, a useful quantity is the

Spearman’s rho defined as ρs = 12E{F1(X)F2(Y )}−3. For example, if one employs the Gaussian

copula

C(u, v; θ) =
−(u)∫
−∞

−(v)∫
−∞

1

2π
√
1−θ2

exp

{
− s2−2θst + t2

2(1−θ2)

}
dsdt

or the t copula

C(u, v; θ) =
t−
4
(u)∫

−∞

t−
4
(v)∫

−∞

1

2π
√
1−θ2

{
1 + s2−2θst + t2

4(1−θ2)

}−3

dsdt

where θ∈[−1, 1] and − and t−ν denote the inverse function of the standard normal dis-

tribution function and t distribution function with degrees of freedom ν, respectively, then

ρs = 6π−1arc sin(θ/2). Hence, Spearman’s rho is of importance in fitting a parametric copula.

Here, we consider constructing a confidence interval for the Spearman’s rho by fitting either the

Gaussian copula or the t copula and modeling marginals by t distributions. In this case, a pro-

file empirical likelihood method can be employed to construct a confidence interval for ρs by

considering the following estimating equations

{
ρs = 12E{F1(X; ν1)F2(Y ; ν2)}−3

0 = EX2− ν1
ν1−2

= EY2− ν2
ν2−2

where F1 and F2 have distributions tν1 and tν2 , respectively. On the other hand, the proposed

jackknife empirical likelihood method can be employed to the above estimating equations as

well.
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First we draw 10,000 random samples with sample size n= 100 and 300 from the Gaussian

copula and t copula by using the package “copula” in R and transform the marginals to have either

normal distributions or t distributions. For computing the coverage probabilities of the proposed

jackknife empirical likelihood method, we employ the package “emplik” in the software R. For

computing the coverage probabilities of the profile empirical likelihood method, we use the

package “emplik” to obtain the likelihood ratio as a function of nuisance parameters and then use

the package “nlm” to find the minimum. These coverage probabilities are reported in Tables 1

and 2. From these tables, we observe that (i) the proposed jackknife empirical likelihood method

performs much better than the profile empirical likelihood method when n= 100; and (ii) both

methods performwellwhen n= 300 although the jackknife empirical likelihoodmethod is slightly

better.

Second, we calculate the average interval lengths for both methods by drawing 1,000 random

samples from the above models. Tables 3 and 4 show that the interval length of the proposed

jackknife empirical likelihoodmethod is slightly bigger than that of the profile empirical likelihood

method.

Third, we draw 10,000 random samples from a three-dimensional normal copula and t copula
with marginal distributions t7, t8, t9, and θ = (θ1, θ2, θ2)

T. Then we apply the proposed jackknife

empirical likelihood method and the profile empirical likelihood method to construct confidence

regions for the three Spearman’s rho. Coverage probabilities are reported in Tables 5 and 6, which

Table 1: Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence

interval (JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9

and 0.95 for the two-dimensional Gaussian copula and marginal distributions t7 and t8.

Level 0.9 JELCI Level 0.9 PELCI Level 0.95 JELCI Level 0.95 PELCI

(n, θ) = (100, 0.25) 0.8683 0.8001 0.9184 0.8438

(n, θ) = (100, 0.5) 0.8573 0.7970 0.9114 0.8416

(n, θ) = (100, 0.75) 0.8563 0.8066 0.9076 0.8505

(n, θ) = (300, 0.25) 0.8961 0.8950 0.9455 0.9436

(n, θ) = (300, 0.5) 0.8969 0.8960 0.9451 0.9437

(n, θ) = (300, 0.75) 0.8961 0.8945 0.9453 0.9433

Table 2: Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence

interval (JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9

and 0.95 for the two-dimensional t copula and marginal distributions t7 and t8.

Level 0.9 JELCI Level 0.9 PELCI Level 0.95 JELCI Level 0.95 PELCI

(n, θ) = (100, 0.25) 0.8679 0.8054 0.9221 0.8518

(n, θ) = (100, 0.5) 0.8605 0.8055 0.9149 0.8531

(n, θ) = (100, 0.75) 0.8575 0.8123 0.9109 0.8612

(n, θ) = (300, 0.25) 0.8948 0.8923 0.9439 0.9420

(n, θ) = (300, 0.5) 0.8963 0.8937 0.9464 0.9439

(n, θ) = (300, 0.75) 0.8935 0.8928 0.9447 0.9434
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Table 3: Empirical interval lengths for the proposed jackknife empirical likelihood confidence interval

(JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9 and 0.95

for the two-dimensional Gaussian copula and marginal distributions t7 and t8.

Level 0.9 JELCI Level 0.9 PELCI Level 0.95 JELCI Level 0.95 PELCI

(n, θ) = (100, 0.25) 0.949 0.938 1.131 1.117

(n, θ) = (100, 0.5) 1.036 1.011 1.233 1.201

(n, θ) = (100, 0.75) 1.130 0.986 1.348 1.174

(n, θ) = (300, 0.25) 0.548 0.547 0.654 0.652

(n, θ) = (300, 0.5) 0.593 0.590 0.706 0.703

(n, θ) = (300, 0.75) 0.634 0.632 0.755 0.752

Table 4: Empirical interval lengths for the proposed jackknife empirical likelihood confidence interval

(JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9 and 0.95

for the two-dimensional t copula and marginal distributions t7 and t8.

Level 0.9 JELCI Level 0.9 PELCI Level 0.95 JELCI Level 0.95 PELCI

(n, θ) = (100, 0.25) 0.956 0.941 1.140 1.121

(n, θ) = (100, 0.5) 1.038 1.015 1.236 1.207

(n, θ) = (100, 0.75) 1.118 0.976 1.334 1.164

(n, θ) = (300, 0.25) 0.553 0.551 0.659 0.657

(n, θ) = (300, 0.5) 0.593 0.590 0.707 0.703

(n, θ) = (300, 0.75) 0.631 0.629 0.752 0.749

Table 5: Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence

interval (JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9

and 0.95 for the three-dimensional Gaussian copula and marginal distributions t7, t8, and t9.

Level 0.9 Level 0.9 Level 0.95 Level 0.95

JELCI PELCI JELCI PELCI

(n, θ1, θ2, θ3) = (100, 0.25, 0.5, 0.25) 0.8216 0.7306 0.8799 0.7746

(n, θ1, θ2, θ3) = (100, 0.5, 0.5, 0.5) 0.8164 0.7363 0.8740 0.7794

(n, θ1, θ2, θ3) = (100, 0.75, 0.5, 0.75) 0.7908 0.7524 0.8497 0.7958

(n, θ1, θ2, θ3) = (300, 0.25, 0.5, 0.25) 0.8934 0.8907 0.9434 0.9384

(n, θ1, θ2, θ3) = (300, 0.5, 0.5, 0.5) 0.8893 0.8872 0.9429 0.9388

(n, θ1, θ2, θ3) = (300, 0.75, 0.5, 0.75) 0.8867 0.8859 0.9406 0.9390

show that the proposed jackknife empirical likelihood method performs better than the profile

empirical likelihood.

In conclusion, the proposed jackknife empirical likelihood method provides good coverage

accuracy and the computation is much simpler than the profile empirical likelihood method.

Moreover, the package “emplik” in the software R is ready to use for the proposed method.
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Table 6: Empirical coverage probabilities for the proposed jackknife empirical likelihood confidence

interval (JELCI) and the profile empirical likelihood confidence interval (PELCI) with nominal levels 0.9

and 0.95 for the three-dimensional t copula and marginal distributions t7, t8, and t9.

Level 0.9 Level 0.9 Level 0.95 Level 0.95

JELCI PELCI JELCI PELCI

(n, θ1, θ2, θ3) = (100, 0.25, 0.5, 0.25) 0.8160 0.7341 0.8733 0.7784

(n, θ1, θ2, θ3) = (100, 0.5, 0.5, 0.5) 0.8025 0.7348 0.8648 0.7835

(n, θ1, θ2, θ3) = (100, 0.75, 0.5, 0.75) 0.7860 0.7443 0.8475 0.7920

(n, θ1, θ2, θ3) = (300, 0.25, 0.5, 0.25) 0.8867 0.8819 0.9390 0.9341

(n, θ1, θ2, θ3) = (300, 0.5, 0.5, 0.5) 0.8858 0.8834 0.9372 0.9340

(n, θ1, θ2, θ3) = (300, 0.75, 0.5, 0.75) 0.8842 0.8857 0.9334 0.9352

4. CASE STUDIES

4.1. Testing the Drift Parameter in the Variance Gamma Model
The class of variance gamma (VG) distributions was introduced by Madan and Seneta (1987) as

an alternative model for stock returns beyond the usual normal distribution assumption. It has so

far been used extensively by financial economists especially in pricing financial derivatives, see

Madan and Milne (1991) and Madan, Carr and Chang (1998) for applications, and Seneta (2007)

for a historical account of the development.

TheVGprocessZt is a time-changedLévy processwhere the subordinator is aGammaprocess.

It is parameterized by three parameters: the drift parameter µ, the volatility parameter σ, and the

subordinator variance parameter ν. More specifically, let St be a gamma process subordinator

with a unit mean rate and a variance rate ν where ν > 0. Let Wt be a standard Brownian motion.

Then the VG process is defined as dZt = µdSt + σdWSt . That is, the calendar time t is now

replaced with the time change St . Let X ≡ Zt+δ−Zt be the increment of Zt with interval δ. The

characteristic function of X is EeiuX = e�(u)δ, where the characteristic exponent �(u) is given by

�(u) = −1

ν
log

{
1 + u2σ2ν

2
−iµνu

}

Given a sample X of increments X with sample size n, we are interested in the hypothesis

H0 : µ = 0. This amounts to asking whether it is sufficient to model the data in interest using a

martingale process. For example, it is interesting to know whether one needs to introduce a drift

parameter for the log change of US/Japan exchange rate process or not. The parameter of interest

is thusµ, and the two nuisance parameters are (σ, ν). To employ the jackknife empirical likelihood

estimation method in this article, we need the estimating equations. One approach would be to

just use the mean equation alone. However, this ignores all higher moments which are the very

reason why financial economists use VG process as an alternative to Brownian motion with drift.

Therefore, below we use a different approach based on higher-order moments. The lowest-order

moments or central moments would seem to be natural choices. However, the odd moments or

central moments are all proportional to µ and thus all zero under the null H0 : µ = 0. Thus, we

use only the even moments with orders 2, 4, and 6.

By differentiating the characteristic function of the VG process increment, the raw even

moments mj(µ, ν, σ) := EXj can be computed easily and estimating equations are obtained

by equating the empirical moments to the raw moments. Then we apply the jackknife empirical

likelihood method to the last equation by solving the first two equations for ν and σ.
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We use four different financial time series, namely, the S&P 500 index (SPX), the CBOE

volatility index (VIX), the effective federal funds rate (FFR), and the exchange rate between

the British Pound and US Dollar (GBP/USD). These four time series are very important in four

distinctive large financial sectors, that is, the equity market, the financial derivative market, the

fixed-income market, and the foreign exchange market. The sample periods are January 1950 to

October 2009 for the SPX, January 1990 to October 2009 for the VIX, July 1954 to September

2009 for the FFR, and January 1971 to July 2009 for the GBP/USD.

Plot of the SPX shows a few significant events, including the amazing run of the SPX before

year 1987, the market crash in 1987, the internet boom in late 1990s, the IT bubble burst in 2001,

andmost recently the subprimemortgage crisis. Plot of the VIX has been largely stable, except for

the abrupt surge during the recent market turmoil. The FFR has had quite a few surges, especially

during the hyper-inflation period in the late 1970s and early 1980s, and has recently reached

unprecedented low levels due to the Fed’s effort to boost the economy. The most noticeable

feature on the GBP/USD subplot is the free fall and fast appreciation of the British Pound before

and after the Plaza Accord in 1985. The recent global financial crisis has also weakened the British

Pound due to the flight to quality by international investors.

Our samples are the weekly log change processes of the above four financial time series. Plots

of the samples confirm the common notion that financial data often deviate a lot from the normal

distribution assumption, see for example, Blattberg &Gonedes (1974) or Kon (1984). Mandelbrot

(1963) traces awareness of this non-normality as far back as year 1915. This nonnormality is

especially true for the times series of the log change of the effective federal funds rate, where we

see a huge kurtosis.

Table 7 reports the test statistic LR(0) for the log changes of the four financial time series

considered. The statistic is asymptoticallyχ2
1 distributed, and the asymptoticP-values are reported.

The skewness and kurtosis for each time series are also included in the table, as well as the result

of a naive t-test. As we would expect, the statistic LR(0) strongly rejects H0 : µ = 0 for the log

changes of the S&P 500 index with a P-value of only 0.0002. However, the statistic cannot reject
H0 : µ = 0 for the log changes of theCBOEvolatility index, and the exchange rate betweenBritish

Pound and US Dollar. These are the same conclusions one gets from the naive t-test assuming

that the sample is drawn from a normal distribution with unknown variance. However, the test on

the log changes of FFR is interesting. A naive t-test suggests that µ = 0, while the test statistic

LR(0) rejects µ = 0 at more than 99% level. This apparent discrepancy might be explained by the

fact that we have used higher-order moments in the estimating equations and that the empirical

distribution of log changes of FFR is very different from the normal distribution with a very large

kurtosis. It also highlights the advantage of using empirical likelihood estimation over the naive

t-test which assumes a normal distribution.

Table 7: Jackknife empirical likelihood ratio test for H0 : µ = 0 in the variance gamma model for financial

time series. The samples are the weekly log changes of the SPX, VIX, FFR, and GBP/USD time series.

Log change of n Skewness Kurtosis t-Test LR(0) P-value

SPX 3059 −0.54 7.77 3.5451 14.3046 0.0002

VIX 1018 0.39 4.82 0.1005 1.1303 0.2877

FFR 2881 −0.32 55.83 −0.2819 7.8141 0.0052

GBP/USD 1987 −0.43 7.10 −0.6286 0.8917 0.3450

The skewness and kurtosis of the samples are also reported as well as the naive t-statistic assuming that the samples

are drawn from a normal distribution with unknown variances.
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4.2. Testing Whether a Normal Tempered Stable Process Is Normal Inverse
Gaussian
A broader class of models that includes the VG process as a special case is the so-called normal
tempered stable process. See Cont and Tankov (2004). This class of models is obtained by time

changing an independent Brownian motion with drift by a tempered stable subordinator St . The

Lévy measure of St with index A and parameter ν is given by

ρS(x) = 1

�(1−A)

(
1−A

ν

)1−A e−(1−A)x/ν

xA+1
1x>0

where ν > 0 and 0≤A< 1 are two constants. The increment X of the time-changed process Yt

again has a closed-form characteristic function with characteristic exponent as follows

�(u) = 1−A

νA

{
1−

(
1 + ν(u2σ2/2−iµu

1−A

)A
}

Two important special cases are theVGprocess (whereA= 0) and the normal inverseGaussian

process (where A= 1/2). See Barndorff-Nielsen (1997) and Rydberg (1997) for early studies on

the normal inverse Gaussian process.

We are now interested in the null hypothesis H0 : A = 1/2, that is, whether the data implies a

normal inverse Gaussian process. Thus, the parameter of interest is A and the nuisance parameters

are now (µ, ν, σ). To employ the jackknife empirical likelihood estimation method, we construct

estimating equations from the raw moments mj(A, µ, ν, σ) := EXj . It turns out that if µ = 0 in

the normal tempered stable process, then the lowest four moments are not functions of A. Also,
if µ = 0, then all odd moments are zero. Thus, to reliably estimate A using moments when µ is

small, we have to include a momentmj with j≥ 6. We choose to use the momentsm1,m2,m4, and

m6 which can be calculated straightforwardly. Then the jackknife empirical likelihood method is

applied to the last equation by using the first three equations to compute µ̃(A;X), ν̃(A;X), and

σ̃(A;X).

We apply the above procedure to the same four time series as before. The results are shown

in Table 8. As we see, the test statistic LR(1/2) cannot reject H0 : A = 1/2 for the log changes

of the S&P 500 index, the CBOE VIX index, and the exchange rate between the British Pound

and US Dollar. However, it strongly rejects A= 1/2 for the log change time series of the effective

federal funds rate.

Table 8: Jackknife empirical likelihood ratio test for H0 : A = 1/2 in a normal tempered stable process

for financial time series.

Log change of n LR(1/2) P-value

SPX 3059 1.0944 0.2955

VIX 1018 1.2903 0.2560

FFR 2881 10.1324 0.0015

GBP/USD 1987 0.2629 0.6082

The weekly log changes of the SPX, VIX, FFR, and GBP/USD are studied.
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APPENDIX: OUTLINE OF PROOFS

Proof of Proposition 1. It follows from Taylor expansions.

Proof of Proposition 2. Using Proposition 1, we can show that

max
1≤i≤n

|Yi,l(α)| = op(n
1/2) (13)

uniformly in ‖α−α0‖ ≤ n−1/3 for l = 1, . . . , s−q2

1√
n

n∑
i=1

Yi(α0)
d→(W1, . . . , Ws−q2 )

T (14)

and

1

n

n∑
i=1

Yi(α0)Y
T
i (α0)

p→(E(WlWk))1≤k,l≤s−q2 (15)

where for l = 1, . . . , s−q2,

Wl = Zl−E

{
∂

∂β
gl(X1;α0, β0)

}
�−1

1 (Zs−q2+1, . . . , Zs)
T

and (Z1, . . . , Zs)
T ∼ N(0, �). Hence, the proposition follows from (13) to (15) and similar

arguments in Owen (1990).

Proof of Theorem 1. By Proposition 1, we can show that

1

n

n∑
i=1

∂

∂α
Yi(α0)

p→ �3

Put V = {�T
3 (�

∗)−1�3}−1. Similar to the proof of Theorem 1 of Qin and Lawless (1994), we can

show that

√
n{α̂−α0} = −V�T

3 (�
∗)−1

√
nQ1n(α0, 0) + op(1)

and

√
nλ̂ = (�∗)−1{I−�3V�T

3 (�
∗)−1}√nQ1n(α0, 0) + op(1)

So,

lJ (α̂) = n

2
QT

1n(α0, 0)(�
∗)−1{I−�3V�T

3 (�
∗)−1}Q1n(α0, 0) + op(1)
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Similarly, we can show that lJ (α0) = (n/2)QT
1n(α0, 0)(�

∗)−1Q1n(α0, 0) + op(1). Therefore,

LR(α0) =
{
(�∗)−1/2 1√

n

n∑
i=1

Yi(α0)

}T

{(�∗)−1/2�3V�T
3 (�

∗)−1/2}
{
(�∗)−1/2 1

n

n∑
i=1

Yi(α0)

}

+ op(1)
d→ χ2

q1

BIBLIOGRAPHY
O. E. Barndorff-Nielsen (1997). Processes of normal inverse Gaussian type. Finance and Stochastics, 2,

41–68.

R. C. Blattberg & N. J. Gonedes (1974). A comparison of the stable and student distributions as statistical

models for stock prices. Journal of Business, 47, 244–280.
R. Cao & I. Van Keilegom (2006). Empirical likelihood tests for two-sample problems via nonparametric

density estimation. The Canadian Journal of Statistics, 34, 61–77.
N. H. Chan, L. Peng & Y. Qi (2006). Quantile inference for near-integrated autoregressive time series with

infinite variance. Statistica Sinica, 16, 15–28.
S. Chen & H. Cui (2007). On the second order properties of empirical likelihood with moment restrictions.

Journal of Econometrics, 141, 492–516.
S. Chen & J. Gao (2007). An adaptive empirical likelihood test for parametric time series regression models.

Journal of Econometrics, 141, 950–972.
S. Chen & P. Hall (1993). Smoothed empirical likelihood confidence intervals for quantiles. The Annals of

Statistics, 21, 1166–1181.
S. Chen & I. Van Keilegom (2009). A review on empirical likelihood methods for regression. Test, 18,

415–447.

J. Chen, L. Peng & Y. Zhao (2009). Empirical likelihood based confidence intervals for copulas. Journal of
Multivariate Analysis, 100, 137–151.

S. X. Chen, L. Peng & Y. Qin (2009). Empirical likelihood methods for high dimension. Biometrika, 96,
711–722.

G. Claeskens, B. Y. Jing, L. Peng&W. Zhou (2003). Empirical likelihood confidence regions for comparison

distributions and ROC curves. The Canadian Journal of Statistics, 31, 173–190.
R. Cont & P. Tankov (2004). “Financial Modeling with Jump Processes,” Chapman & Hall/CRC, Boca

Raton.

P. Guggenberger & R. J. Smith (2008). Generalized empirical likelihood tests in time series models with

potential identification failure. Journal of Econometrics, 142, 134–161.
P. Hall & B. La Scala (1990). Methodology and algorithms of empirical likelihood. International Statistical

Review, 58, 109–127.
P. Hall & Q. Yao (2003). Data tilting for time series. Journal of the Royal Statistical Society Series B, 65,

425–442.

N. L. Hjort, I. W. McKeague & I. Van Keilegom (2009). Extending the scope of empirical likelihood. The
Annals of Statistics, 37, 10179–11115.

B. Y. Jing, J. Q. Yuan &W. Zhou (2009). Jackknife empirical likelihood. Journal of the American Statistical
Association, 104, 1224–1232.

A. Keziou & S. Leoni-Aubin (2008). On empirical likelihood for semiparametric two-sample density ratio

models. Journal of Statistical Planning and Inference, 138, 915–928.
S. J. Kon (1984). Models of stock returns—A comparison. Journal of Finance, 39, 147–165.
J. Lu & L. Peng (2002). Likelihood based confidence intervals for the tail index. Extremes, 5, 337–352.
X. Lu & Y. Qi (2004). Empirical likelihood for the additive risk model. Probability and Mathematical

Statistics, 24, 419–431.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



384 MINQIANG, LIANG AND YONGCHENG Vol. 39, No. 2

D. B. Madan & F. Milne (1991). Option pricing with VG martingale components. Mathematical Finance,
1(4), 39–55.

D. B. Madan & E. Seneta (1987). Chebyshev polynomial approximations and characteristic function esti-

mation. Journal of the Royal Statistical Society Series B, 49, 163–169.
D. B. Madan, P. P. Carr & E. C. Chang (1998). The variance Gamma process and option pricing. European

Finance Review, 2, 79–105.
B. Mandelbrot (1963). The variation of certain speculative prices. Journal of Business, 36(4), 394–419.
D. J. Nordman & S. N. Lahiri (2006). A frequency domain empirical likelihood for short- and long-range

dependence. The Annals of Statistics, 34, 3019–3050.
D. J. Nordman, P. Sibbertsen & S. N. Lahiri (2007). Empirical likelihood confidence intervals for the mean

of a long-range dependent process. Journal of Time Series Analysis, 28, 576–599.
A. Owen (1988). Empirical likelihood ratio confidence intervals for single functional. Biometrika, 75,

237–249.

A. Owen (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18, 90–120.
L. Peng (2004). Empirical likelihood confidence interval for a mean with a heavy tailed distribution. The

Annals of Statistics, 32, 1192–1214.
L. Peng & Y. Qi (2006a). A new calibration method of constructing empirical likelihood-based confidence

intervals for the tail index. Australian & New Zealand Journal of Statistics, 48, 59–66.
L. Peng & Y. Qi (2006b). Confidence regions for high quantiles of a heavy tailed distribution. The Annals

of Statistics, 34, 1964–1986.
J. Qin& J. F. Lawless (1994). Empirical likelihood and general estimating equations. The Annals of Statistics,

22, 300–325.

J. Ren (2008).Weighted empirical likelihood in some two-sample semiparametric models with various types

of censored data. The Annals of Statistics, 36, 147–166.
T. H. Rydberg (1997). The normal inverse Gaussian Levy process: Simulation and approximation. Commu-

nications in Statistics: Stochastic Models, 13, 887–910.
E. Seneta (2007). The EarlyYears of theVariance-GammaProcess. In: “Advances inMathematical Finance,”

M. C. Fu, R. A. Jarrow, J.-Y. J. Yen, and R. J. Elliott, editors. Birkhauser, Boston, pp. 3–19.

J. Shao & D. Tu (1995). “The Jackknife and Bootstrap,” Springer, New York.

J. Shen & S. He (2007). Empirical likelihood for the difference of quantiles under censorship. Statistical
Papers, 48, 437–457.

J. W. Tukey (1958). Bias and confidence in not-quite large samples. The Annals of Statistics, 29, 614.
W. Zhou & B. Y. Jing (2003). Smoothed empirical likelihood confidence intervals for the difference of

quantiles. Statistica Sinica, 13, 83–95.
Y. Zhou & H. Liang (2005). Empirical-likelihood-based semiparametric inference for the treatment effect

in the two-sample problem with censoring. Biometrika, 92, 271–282.

Received 2 August 2010
Accepted 3 January 2011

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs


