Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

1Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America, 2Department of Ecology and Evolutionary Biology and iPlant Collaborative, University of Arizona, Tucson, Arizona, United States of America, 3United States Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Unit, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, United States of America, 4United States Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository, University of California Davis, Davis, California, United States of America, 5United States Department of Agriculture, Agricultural Research Service, Grape Genetic Research Unit, New York Agricultural Experiment Station, Cornell University, Geneva, New York, United States of America, 6Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America, 7Faculty of Agriculture, Dalhousie University, Truro, Canada

Abstract

Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction.

Introduction

Understanding relationships among species is the basis for modern classification schemes and provides the requisite framework for ecological and evolutionary analyses of diversity patterns and diversification processes [1,2]. Large-scale coordinated research programs, together with technical and analytical advances, have facilitated significant progress in current understanding of organismal phylogeny. Despite this, uncertainty regarding evolutionary relationships among species remains in many groups, including several that include economically important species such as apples [3,4], grapes [5–7], potatoes [8], and wheat [9].

Over the past five years, nearly all sub-disciplines within biology have been revolutionized in the wake of the genomics era [10,11]. Widespread adoption of next-generation sequencing (NGS) technologies have reduced the cost of DNA sequencing by orders of magnitude providing unprecedented access to the genome of an organism (www.genome.gov/sequencingcosts). One application of NGS is single nucleotide polymorphism (SNP) discovery through whole-genome sequencing or comparative sequence analysis of expressed sequence tags (ESTs) or reduced-representation libraries (RRLs) [12–14]. Resulting SNPs can be used to construct a SNP array, a compilation of hundreds, thousands, or even millions of polymorphic sites that enables genotyping of an individual at multiple loci simultaneously (e.g., [13]). To date, SNP arrays have been developed primarily in systems for which large amounts of genomic data are already available, including model organisms with sequenced genomes or domesticated species with significant EST libraries [15–19]. In combination with phenotypic data, SNP arrays have been used extensively in linkage mapping (e.g., [20]), association genetics (e.g., [21]), and genome-wide association studies [22,23] and have been particularly useful in screening variation in crop species [24]. High-throughput genotyping via
SNP arrays have contributed to current understanding of the genetic basis of agriculturally important traits and is supporting crop improvement efforts by accelerating marker-assisted selection and genomic selection [23].

In addition to crop improvement, SNP microarray technology holds great promise for studying evolutionary processes that shape variation in natural populations [26–30]. For example, SNP arrays have been used to characterize the genetic basis of local adaptation in *Arabidopsis* [31] [32], Douglas fir [33], loblolly pine [34], poplar [35], and Sitka Spruce [36], among others. The convenience of genotyping thousands of sites at the same time, together with the economy of scale, has propelled the use of array-generated genotypic data in a variety of evolutionary questions.

Phylogeny reconstruction based on genome-wide data (“phylogenomics”) is an exciting and important development in evolutionary biology [10,37]. SNP arrays present a potentially valuable source of data for this purpose and have already been used to genotype large numbers of individuals across multiple species. For example, evolutionary relationships among higher ruminants (e.g., cattle, sheep, goats, antelopes, deer, giraffes, pronghorn) were estimated using the Bovine SNP50 BeadChip, an array developed from variation detected among six cattle breeds and from heterozygous sites in the sequenced cattle genome [38,39].

Phylogenomic analyses based on 678 animals representing 61 species genotyped at more than 40,000 SNP sites yielded support for established clades and identified several new relationships. Similar studies have been completed in humans [16], horses and their wild relatives [13], and old world monkeys [40].

Utilization of SNP arrays involves applying variation discovered in one or a few individuals to a large range of accessions [41,42]. The number and diversity of individuals used in the SNP discovery process (the discovery panel) almost always leads to some degree of ascertainment bias because the discovery panel consists of only a small subset of the individuals to be genotyped on the array [43,44]. Frequently, the discovery panel favors identification of SNPs with high minor allele frequencies, introducing bias against rare alleles [45]. Ascertainment bias becomes particularly acute when SNPs identified for one level of analysis (e.g., within species comparisons) are used at different scales (e.g., among species comparisons, as in phylogeny reconstruction) [30,46]. Indeed, it has been shown that the application of SNPs identified in a discovery panel to a broad set of samples is accompanied by losses in utility, particularly as genotyping is attempted for individuals that are increasingly evolutionarily divergent from the panel accessions [47–51]. We expect ascertainment bias to be particularly severe when assaying variation across a highly diverse genus like *Vitis*, where common ancestry between species is expected to date back tens of millions of years [5,7].

Several approaches to reduce the effects of ascertainment bias have been proposed (reviewed in [45,46]), one of which involves the use of hybridization intensity data rather than genotype calls. Hybridization intensity data capture otherwise undetectable variation in SNP array data known as “off-target variants”, variation in genomic DNA that differs from the expected variant based on diversity housed in the discovery panel, and genomic selection [25].

Bias in array-enabled phylogeny reconstruction. This study system exhibits many attributes believed to exacerbate ascertainment bias: 1) *Vitis* is highly heterozygous; 2) common ancestry between species dates to at least 10 million years ago [5,7]; and 3) the *Vitis*9kSNP array discovery panel was built using 17 individuals (eleven *V. vinifera* cultivars, one individual each of *V. amurensis*, *V. cinerea*, *V. labrusca*, *V. palmata*, *V. rotundifolia*, and *V. vinifera* ssp. *sylvestris*) but has been used to survey larger numbers of samples from a variety of taxa. In addition, previous phylogenetic analyses of *Vitis* have demonstrated consistent support for some relationships, for example, the progenitor-descendant relationship between *sylvestris* and the cultivated grape *vinifera*. Clades like this present an opportunity to evaluate whether genotype data or hybridization intensity data (or both) have the capacity to recover known relationships.

Here, we use the *Vitis*9kSNP array to characterize variation in approximately one third of *Vitis* species, genotyping over 1100 accessions at nearly 9000 sites [14]. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate, than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus *Vitis* using hybridization data, provide evidence to suggest that North American subgenus *Vitis* species are monophyletic, and identify several species-level relationships among North American *Vitis* species. This study builds on previous work that applied the *Vitis*9kSNP array to evolutionary questions within *Vitis* [55]; Myles et al. unpublished data), and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction.

Methods

Sampling

Leaves for DNA extraction were collected from the USDA grape germplasm collections in Davis, California, and Geneva, New York. Permission for tissue collection was obtained from the local USDA authorities. DNA was extracted using DNeasy Plant Mini Kits (Qiagen) and 1173 accessions representing 19 taxa (16

Figure

Phylogenomics provides a valuable source of data for studying evolutionary processes that shape variation in natural populations. The convenience of genotyping thousands of sites at the same time, together with the economy of scale, has propelled the use of array-generated genotypic data in a variety of evolutionary questions.

Methods

Sampling

Leaves for DNA extraction were collected from the USDA grape germplasm collections in Davis, California, and Geneva, New York. Permission for tissue collection was obtained from the local USDA authorities. DNA was extracted using DNeasy Plant Mini Kits (Qiagen) and 1173 accessions representing 19 taxa.
Analyses of genotype data
To facilitate direct comparison between genotype data and hybridization intensity data, genotypes were used to calculate F_{ST} among species. Only SNPs with MAF > 0.05 and < 20% missing data were included, resulting in 4073 SNPs and 1030 samples. We calculated a weighted average F_{ST} between all pairs of species following equation 10 in [65]. The resulting F_{ST} distance matrix was visualized with a multi-dimensional scaling (MDS) plot. The F_{ST} distance matrix was then used to construct phylogenetic trees using the “nj” function in the ape package in R [66]. Neighbour-joining (NJ) trees rooted with $V. \ rotundifolia$, a representative of subgenus Muscadinia, were generated. To assess the impact of $V. \ vinifera$ and $V. \ sylvestris$ on the analysis, phylogenetic trees were constructed for the full dataset, as well as a reduced dataset with $V. \ vinifera$ and $V. \ sylvestris$ removed.

Analyses of hybridization intensity data
We investigated whether the effects of ascertainment bias on phylogenetic structure could be circumvented using normalized intensity data. Instead of forcing the intensity values generated from the probes on the array into categorical variables, i.e. genotype calls, we used the normalized intensity values as “quantitative genotypes” and calculated genetic distances between species using these scores. To explore the utility of hybridization intensity data in the reconstruction of evolutionary relationships, normalized intensity data from all 8898 SNPs assayed by the

<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Geographic area</th>
<th>Species</th>
<th>N = 1173 (before filters)</th>
<th>N = 1030 (after filters)</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subg. Muscadinia</td>
<td>North America</td>
<td>V. rotundifolia Michaux</td>
<td>71</td>
<td>68</td>
<td>Muscadine grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. acerifolia Rafinesque</td>
<td>18</td>
<td>15</td>
<td>Bush grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. aestivalis Michaux</td>
<td>55</td>
<td>42</td>
<td>Summer grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. cinerea (Engelm). Engelm. Ex Millardet</td>
<td>98</td>
<td>70</td>
<td>Downy grape, sweet winter grape, graybark grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. daoaniana</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. girdiana Munson</td>
<td>4</td>
<td>4</td>
<td>Desert wild grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. labrusca Linneaus</td>
<td>36</td>
<td>23</td>
<td>Fox grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America; limestone hills on the Edwards Plateau</td>
<td>V. monticola Buckley</td>
<td>5</td>
<td>4</td>
<td>Sweet mountain grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America (Texas), Mexico</td>
<td>V. mustangensis Buckley</td>
<td>7</td>
<td>5</td>
<td>Mustang grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. palmata Vahl.</td>
<td>13</td>
<td>9</td>
<td>Catbird grape, Red grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. riparia Michaux</td>
<td>113</td>
<td>73</td>
<td>Riverbank grape, frost grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. rupestris Scheele</td>
<td>48</td>
<td>36</td>
<td>Rock grape, sand grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America</td>
<td>V. vulpina L.</td>
<td>23</td>
<td>15</td>
<td>Winter grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>North America (Texas)</td>
<td>V. x champini Planch. (= V. mustangensis and V. rupestris)</td>
<td>15</td>
<td>12</td>
<td>Champin’s grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>Eurasia (China, Japan, Russia)</td>
<td>V. amurensis Rupr.</td>
<td>22</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>East Asia (China, Japan)</td>
<td>V. coignetiae Pulliat ex Planch.</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>East Asia (China)</td>
<td>V. pisezkii Maxim. pagnuccii (Rom. Caill.) Rehder</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>Eurasia</td>
<td>V. sylvestris W. Bartram (= V. vinifera subsp. sylvestris (C. C. Gmel.) Hegi)</td>
<td>59</td>
<td>59</td>
<td>European grape</td>
</tr>
<tr>
<td>Subg. Vitis</td>
<td>Eurasia</td>
<td>V. vinifera L. (= V. vinifera subsp. vinifera)</td>
<td>570</td>
<td>570</td>
<td></td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0078680.t001
Vitis9kSNP array were used to calculate a genetic distance matrix between species. This matrix was generated using the same set of samples and has the same format as the F_{ST} distance matrix, facilitating comparison between relationships resolved using data from SNP genotype calls (previous section) and those resolved using the intensity data. For each SNP, the intensity data from the array consist of a normalized intensity for allele A (X) and a normalized intensity for allele B (Y) that captures information from an average of 30 probes querying that particular SNP. We investigated several summary statistics of these intensity values including X, Y, $X+Y$, $X/(X+Y)$, $ln(X/(X+Y))$, $ln(Y/(X+Y))$, and $ln(X/Y)$. To generate a single value for each SNP for each species, the median of the above summary statistics for each SNP was calculated for each species. Each of these matrices of summary statistics was converted into a distance matrix by calculating the Euclidean distances between each pair of species using the “dist” function in R. MDS plots were generated from these distance matrices to evaluate how well the intensity data captured genetic relationships among species. Distance matrices based on hybridization intensity were compared to one another and to the F_{ST} matrix to evaluate how well the intensity data captured genetic relationships among species. This matrix was generated using the same set of samples for the Vitis9kSNP array to calculate a genetic distance matrix. This matrix was clearly distantly related to other Vitis species based on F_{ST} values (Figs. 4a, 5). However, V. vinifera and V. sylvestris appear misplaced in the MDS plot as they cluster more closely to North American Vitis than to Eurasian Vitis (Figs. 4a, b), which is neither in agreement with their geographic distribution nor with previous work [5–7]. Even more striking, phylogenetic analyses of the F_{ST} distance matrix of SNP genotypes fail to group vinifera with sylvestris, a well-known progenitor-descendent pair (Fig. 5a). Phylogenetic analysis of the genotype data places sylvestris with other Eurasian species V. amurensis, V. coignetiae, and V. paezki while velina falls outside of a large clade of North American and Eurasian subgenus Vitis, alongside the sole representative of subgenus Muscadinia, V. rotundifolia (Fig. 5a). This placement of velina renders subgenus Vitis non-monophyletic based on SNP genotype calls and is inconsistent with all known evidence and previous work.

Despite the effect of ascertainment bias on inferring relationships to velina, the MDS (Figs. 4a–b) and phylogenetic analyses (Fig. 5a) of SNP genotype data resolve some relationships identified in previous Vitis analyses [5,6]: 1) a Eurasian cluster within velina is basal to a group that includes V. paezki and V. amurensis; 2) a clade of North American subgenus Vitis species in which velina occupies the basal position; 2a) V. aestivalis+V. labrusca group together with V. c. vulgaris; and 2b) V. champeney+V. mustangensis form a clade that is sister to a clade of (V. monticola (V. girldana (V. riparia+V. acerifolia))). With respect to Moore’s classification scheme [68], these results support the monophyly of Moore’s Series Ripariae (V. acerifolia, V. riparia, and V. ripetis), but do not support the monophyly of Series Cordifoliae (V. monticola Buckley, V. palmata Vahl, V. vulpina Linnaeus), or Series Labruscae (V. labrusca Linnaeus, V. mustangensis Buckley, V. shuttleworthii House). There is insufficient sampling/taxon identification (subspecific classification is not known for many accessions) to evaluate the monophyly of Moore’s Series Aestivales (V. aestivalis Michaux, V. aestivalis var. aestivalis, V. aestivalis var. bicolor Dean, V. aestivalis var. linceum (Buckley) Munson) or Series Cinerescentes (V. c. Engelmann ex Millardet, V. c. baileyana (Munson) Comeaux, V. c. vulgaris var. virgins, V. c. floridana Munson, V. berlandieri Planchon). SNP genotype data presented here corroborate several relationships identified in previous studies [3–7].

Genetic distances based on SNP genotypes

Genetic distance among each pair of species was estimated using the F_{ST} statistic and MDS plots were used to visualize the resulting genetic distances among all species. NJ trees were rooted with V. rotundifolia and completed for the full filtered dataset of 1030 samples. As was the case using PCA (Fig. 1), V. rotundifolia is clearly distantly related to other Vitis species based on F_{ST} values (Figs. 4a, 5). However, velina and sylvestris appear misplaced in the MDS plot as they cluster more closely to North American than to Eurasian velina (Figs. 4a, b), which is neither in agreement with their geographic distribution nor with previous work [5–7]. Even more striking, phylogenetic analyses of the F_{ST} distance matrix of SNP genotypes fail to group velina with sylvestris, a well-known progenitor-descendent pair (Fig. 5a). Phylogenetic analysis of the genotype data places sylvestris with other Eurasian species V. amurensis, V. coignetiae, and V. paezki while velina falls outside of a large clade of North American and Eurasian subgenus Vitis, alongside the sole representative of subgenus Muscadinia, V. rotundifolia (Fig. 5a). This placement of velina renders subgenus Vitis non-monophyletic based on SNP genotype calls and is inconsistent with all known evidence and previous work.

Despite the effect of ascertainment bias on inferring relationships to velina, the MDS (Figs. 4a–b) and phylogenetic analyses (Fig. 5a) of SNP genotype data resolve some relationships identified in previous Vitis analyses [5,6]: 1) a Eurasian cluster in which velina is basal to a group that includes V. paezki and V. amurensis; 2) a clade of North American subgenus Vitis species in which palmata occupies the basal position; 2a) V. aestivalis+V. labrusca group together with V. c. vulgaris; and 2b) V. champeney+V. mustangensis form a clade that is sister to a clade of (V. monticola (V. girldana (V. riparia+V. acerifolia))). With respect to Moore’s classification scheme [68], these results support the monophyly of Moore’s Series Ripariae (V. acerifolia, V. riparia, and V. ripetis), but do not support the monophyly of Series Cordifoliae (V. monticola Buckley, V. palmata Vahl, V. vulpina Linnaeus), or Series Labruscae (V. labrusca Linnaeus, V. mustangensis Buckley, V. shuttleworthii House). There is insufficient sampling/taxon identification (subspecific classification is not known for many accessions) to evaluate the monophyly of Moore’s Series Aestivales (V. aestivalis Michaux, V. aestivalis var. aestivalis, V. aestivalis var. bicolor Dean, V. aestivalis var. linceum (Buckley) Munson) or Series Cinerescentes (V. c. Engelmann ex Millardet, V. c. baileyana (Munson) Comeaux, V. c. vulgaris var. virgins, V. c. floridana Munson, V. berlandieri Planchon). SNP genotype data presented here corroborate several relationships identified in previous studies [3–7].

Genetic distances based on hybridization intensities

The distance matrices generated from the various intensity data summary statistics (see Methods) were all highly correlated with one another (Manel test; all pairwise comparisons p<1x10^-10). This suggests that, regardless of the summary statistic used, the resulting genetic distance measures among species remain similar. Moreover, we compared phylogenetic tree topologies constructed from distance matrices derived from the various intensity data summary statistics and found that tree topology remains almost identical regardless of the summary statistic employed (Table S1).
We therefore chose arbitrarily from among the summary statistics of the hybridization intensities and present results from the use of $\ln(X/Y)$. The genetic distance matrix generated from $\ln(X/Y)$ values was correlated with the F_{ST} distance matrix (Mantel test, $p = 0.021$). However, the genetic distances derived from intensity values recover a more accurate phylogeny of the genus *Vitis* than the genetic distances calculated from SNP genotypes (Figs. 4c, d; 5b). Most notably, the intensity data-based phylogenetic analyses resolve *vinifera* and *sylvestris* as sister taxa which share a most recent common ancestor with the Eurasian clade of *V. piaezkii* and *V. amurensis*+*V. coignetiae*. This is consistent with other phylogenetic analyses of *Vitis* that have suggested a close relationship between the cultivated grape and Eurasian *Vitis* species [5–7].

Similar to the SNP genotype data, the intensity data resolve two clades within subgenus *Vitis*: 1) a Eurasian subgenus *Vitis* clade that includes (*sylvestris*+*vinifera*) and (*V. piaezkii* (*V. amurensis*+*V. coignetiae*)), and 2) a North American subgenus *Vitis* clade that includes *V. palmata* sister to 2a) (*V. labrusca*+*V. aestivalis*) and (*V. cinerea*+*V.

Figure 1. Principal components analysis (PCA) of 1030 *Vitis* samples using 3231 SNPs. The proportion of the variance explained is found within parentheses on each axis. A) PCA with all samples included. PC1 clearly separates *vinifera* and *sylvestris* from the other wild *Vitis* species while PC2 separates *rotundifolia* from all others. B–D) PCA with *rotundifolia*, *sylvestris* and *vinifera* removed. Examining the distances between individual samples in PC space confirms that the curated sample set used in the present study does not likely suffer from mislabeling or curation error.

doi:10.1371/journal.pone.0078680.g001
ascertainment bias results in intermediate frequency alleles compared to PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78680

from North America. clades within subgenus identification). Although the intensity data resolve the two main evaluated given present sampling and lack of sub-specific taxon monophyly of Series Aestivales and Series Cinerscentes cannot be monophyly of Series Cordifoliae and Series Labruscae. The monophyly of Moore’s Series Ripariae and fail to support the genotype analysis (described above), the intensity data support the monophyly of Series Aestivales and Series Cinerscentes cannot be evaluated given present sampling and lack of sub-specific taxon identification). Although the intensity data resolve the two main clades within subgenus Vitis (a clade of North American subgenus Vitis species and a clade of Eurasian subgenus Vitis species), they fail to resolve a monophyletic subgenus Vitis.

Discussion

This study offers a phylogenomic approach to elucidating relationships in the North Temperate genus Vitis, which includes the most economically important berry species in the world, the cultivated grapevine vinifera. Leveraging a SNP array designed primarily for the cultivated grapevine, polymorphic sites discovered in vinifera and a small group of wild Vitis individuals were screened in over 1100 accessions representing 19 Vitis taxa, and used to reconstruct evolutionary relationships within Vitis. These data suggest that the Vitis9KSNP array suffers from ascertainment bias: SNPs were discovered mainly in vinifera and these SNPs are thus more likely to segregate in vinifera and its closely related ancestor sylvestris than in more distantly related wild Vitis species [14]. We investigated the effects of this ascertainment bias on phylogenetic inferences by analyzing relationships among diverse Vitis taxa using both SNP genotype calls and quantitative genotypes derived from hybridization intensity data. We demonstrate that ascertainment bias is pronounced when SNP genotypes are used to calculate genetic distances among taxa (Figs. 4a,b) and to construct phylogenies (Fig. 5a), leading to the failure to recover known clades. As an alternative to genotype calls plagued by ascertainment bias, summaries of hybridization intensity data provide a more accurate view of relationships among Vitis taxa (Figs. 4c,d; 5b). However, it is worth noting that even the hybridization intensity statistics are affected by ascertainment bias: genetic distance calculations based on intensity values involving vinifera or sylvestris are systematically upward biased (Fig. 6). This is unsurprising as we expect the probes on the Vitis9KSNP array, which were designed based on the Pinot Noir (vinifera cultivar) reference genome, to hybridize better to vinifera and sylvestris samples than to distantly related Vitis species whose sequences are not as complimentary to the probes on the array. Nevertheless, our analyses demonstrate that the severity of ascertainment bias when calling genotypes across diverse taxa results in incorrect phylogenetic inferences, while these obvious phylogenetic errors are not present when using intensity-based genetic distance measures. The data presented here confirm that SNP arrays developed for one taxon (e.g., vinifera or one purpose (e.g., identifying gene regions associated with traits of agricultural importance) can be co-opted to study evolution and divergence at larger taxonomic scales, and

Figure 2. Minor allele frequency (MAF) for vinifera and sylvestris and two representative taxa, V. coignetiae from Asia and V. riparia from North America. MAF allele frequencies for other species look similar to V. coignetiae and V. riparia with a severe deficit of intermediate frequency alleles compared to vinifera and sylvestris.

doi:10.1371/journal.pone.0078680.g002

Figure 3. Evidence of ascertainment bias from the Vitis9KSNP array. A) Between-species comparisons with vinifera or sylvestris involve far fewer monomorphic SNPs than other comparisons. The number of monomorphic SNPs was calculated for every pairwise comparison between species. Because vinifera and sylvestris show an excess of intermediate frequency alleles compared to other Vitis species using the Vitis9KSNP array, comparisons involving vinifera or sylvestris display fewer monomorphic sites relative to comparisons involving other species pairs. B) The dotted lines indicated by “min” and “max” are the minimum and maximum Fst values from comparisons between vinifera or sylvestris and other species. The ascertainment bias results in intermediate Fst estimates with relatively little variation for pairwise comparisons between species involving vinifera or sylvestris.

doi:10.1371/journal.pone.0078680.g003
that this work is enhanced significantly by the use of hybridization intensity data.

Ascertainment bias in SNP arrays and the promise of hybridization intensity data in phylogenomics

SNP arrays have been developed for many crop plants [69] including apple [70], common bean [71]; citrus [51], corn [72], grape [14], peach [19], and rice [73,74] for the purposes of population genetics, gene discovery, and marker-assisted selection. However, the application of these arrays to broader phylogenomic questions has been limited. Transferability of SNP arrays seems plausible in long-lived perennials that are particularly heterozygous [75]; for example [51], used SNPs recovered in the clementine genome to examine evolutionary relationships among over 50 diverse accessions in the complex Citrus genus. Data presented here provide further support for this, suggesting that SNP arrays have tremendous potential for expanding current understanding of evolutionary relationships among crop species and their wild relatives.

Figure 4. MDS plots of genetic distances among Vitis species using SNP genotype calls (A and B) and array hybridization intensities (C and D). A) MDS of FST distances among all species calculated from genotype calls. B) Same as A) but without rotundifolia. C) MDS of genetic distances among all species based on intensity values. D) Same as C) but without rotundifolia.
doi:10.1371/journal.pone.0078680.g004
Ascertainment bias is known to interfere with population genetic inferences [76]. This study demonstrates that ascertainment bias is especially present in analyses above the species-level. The *Vitis* phylogeny built using SNP genotype data (Fig. 5a) failed to identify the close evolutionary link between the cultivated *vinifera* and its wild ancestor *sylvestris*, a well-known relationship that has been documented using molecular genetic data [5–7]. To address the problematic phylogeny that resulted from the ascertainment bias inherent in the genotype calls, we derived quantitative genotypes from the hybridization intensities and used these to estimate genetic distances among species. The resulting intensity-based phylogeny recovered most known clades and suggested other novel relationships not identified in previous analyses (described below).

Figure 5. The phylogenetic tree of *Vitis* based on SNP genotype calls differs from the phylogenetic generated using array hybridization intensities. A) Neighbour-joining (NJ) tree from *F*ST estimates derived from SNP genotype calls from the Vitis9KSNP array. B) NJ tree from a distance measure derived from hybridization intensities from the Vitis9KSNP array.

doi:10.1371/journal.pone.0078680.g005

Implications of phylogenomic analyses for understanding evolutionary relationships within *Vitis*

Phylogenomic analyses of *Vitis* based on the Vitis9KSNP array data resolve several clades identified in previous analyses [5–7,59–63] and suggest novel relationships not previously identified. On a broad phylogenetic scale, the hybridization intensity data support the distinction between subgenus *Muscadinia* (2n = 40) and two subgenus *Vitis* clades (2n = 38) [61]; however, neither the hybridization intensity analysis nor the SNP genotype analysis resolved a monophyletic subgenus *Vitis* (Fig. 5). This may be an example of ascertainment bias that is simply too strong to be overcome with hybridization intensity data. Of the 17 accessions used in the original discovery panel [14], only one came from subgenus *Muscadinia*. Perhaps any signal of differentiation between subgenus *Muscadinia* and subgenus *Vitis* may have been swamped by the sheer number of sites segregating within *vinifera*, and among *vinifera* and other subgenus *Vitis* taxa.

Subgenus *Vitis* exhibits a classic Eastern Asian-North American disjunct distribution with one species complex occurring in Eurasia. Although additional sampling representing both Eurasian and North American subgenus *Vitis* taxa is required to test the monophyly of the these groups, data presented here and in a previous study [60] indicate two evolutionarily distinct monophyletic groups within subgenus *Vitis*, one of which occupies Eurasia and the other which occupies North America. Some previous studies resolved a monophyletic Eurasian subgenus *Vitis* group, but did not support a monophyletic North American clade of subgenus *Vitis* [5,7]. These studies suggested that North American *Vitis* species are ancestral within subgenus *Vitis*, and that a Eurasian subgenus *Vitis* group evolved from within the North American Subgenus *Vitis* clade. A different group of analyses reported a clade of North American subgenus *Vitis* species nested within a paraphyletic Asian subgenus *Vitis* [7,63], and/or various degrees of intermixing among Eurasian and North American subgenus *Vitis* taxa [6,60,63]. The evolutionarily and geographically distinct Subgenus *Vitis* clades identified in this study could have resulted from a vicariant event (continental drift) leading to the geographic separation of Eurasian *Vitis* and North American *Vitis*, which was most likely associated by diversification of these groups on their respective continents [63]. A well-documented aspect of the North Temperate disjunct pattern is that genera displaying this
geographic distribution generally have more Eurasian species than North American species possibly due to greater net speciation and rates of molecular evolution [77, 78]. This observation is corroborated in subgenus *Vitis*, where approximately 37 species have been recorded in Eurasia [58] and at least ~17 taxa in North America (Moore and Wen, unpublished data).

North American subgenus *Vitis* species have been grouped by various authors, including M. O. Moore [68] who designated five series within subgenus *Vitis* in eastern North America based on morphological features: series *Aestivales* (includes *V. aestivalis*), series *Cinerescents* (includes *V. cinerea*), series *Cordifoliae* (includes *V. monticola, V. palmata*, and *V. vulpina*), series *Labruscae* (includes *V. labrusca, V. mustangensis*, and *V. shuttleworthii*), and series *Ripariae* (includes *V. acerifolia, V. riparia*, and *V. rupestris*). Moore’s (1991) [68] key to the series based on morphological features provides a framework of relationships among the series (Aestivales (Cinerescents (Labruscae (Ripariae, Cordifoliae)))). Previous phylogenetic analyses have provided support for series Ripariae (V. *acerifolia, V. riparia,* and *V. rupestris*) [6, 7, 63]. Zecca et al. [5] resolved a clade with *V. riparia* and *V. rupestris*, but *V. acerifolia* grouped with *V. arizonica* and *V. girishana*, among others. All analyses performed here support a sister-taxon relationship between *V. acerifolia* and *V. riparia*, which together form a clade with *V. rupestris*. Although a close relationship between *V. riparia* and *V. rupestris* is widely supported, discrepancy in the placement of *V. acerifolia* may indicate that this species has a hybrid origin derived from a cross between *V. riparia* or *V. rupestris* and one of the southwestern species.

Expanding upon the *V. acerifolia – riparia – rupestris* group, the hybridization intensity data provide evidence for a clade of subgenus *Vitis* species found primarily in the central-southern-southeastern United States (*V. riparia* is an exception to this) by placing the *V. acerifolia – riparia – rupestris* clade with *V. monticola, V. mustangensis*, and their hybrid derivative *V. x championii* (*V. mustangensis* x *V. rupestris*) (Fig. 5). Like *V. acerifolia* and *V. rupestris, V. monticola* and *V. mustangensis* are species whose primary distributions are in the central to central-southern United States. *Vitis riparia* is a widespread climbing vine found throughout the Midwest and the northeastern quarter of the United States. Previous authors grouped *V. monticola* with *V. palmata* and *V. vulpina* based on morphology [68], but some recent molecular analyses have suggested a relationship between *V. monticola, V. mustangensis* and the *V. acerifolia – riparia – rupestris* group [6] but see [7]. The SNP genotype calls place the Californian species *V. girishana* in this group as well, consistent with previous analyses [5–7].

A second major clade within North American subgenus *Vitis* includes two species pairs: *V. aestivalis-V. labrusca* and *V. cinerea-V. vulpina*; *V. palmata* is basal among all North American subgenus *Vitis* species. *Vitis aestivalis, V. cinerea, V. labrusca, and V. vulpina* have largely overlapping distributions in the eastern half of the United States. These species clustered together in earlier studies [5]; most recently [7], identified a clade of (*V. aestivalis-V. labrusca*+*V. vulpina*), and a second clade of (*V. cinerea-V. palmata*)+(*V. mustangensis-V. shuttleworthii*). While both this study and [7] find support for a close relationship between *V. aestivalis* and *V. labrusca*, the positions of *V. monticola, V. palmata,* and *V. vulpina differ in the two analyses. The results of both studies conflict with Moore’s [68, 79] classification scheme. For example, Moore’s series Cordifoliae includes *V. monticola, V. palmata,* and *V. vulpina*; analyses presented here suggest *V. palmata* is basal in North American subgenus *Vitis* and that *V. vulpina* forms a clade with *V. cinerea*. Similarly, Moore’s [68] series Labruscae posits a close relationship between *V. labrusca, V. mustangensis*, and *V. shuttleworthii* (not sampled in this study). However, data presented here suggest *V. labrusca* forms a clade with *V. aestivalis*, and that *V. mustangensis* groups with *V. acerifolia, V. monticola, V. riparia,* and *V. rupestris*.

Phylogenetic relationships of crop wild relatives can provide insights into the evolutionary history of a crop as well as a window into contemporary evolutionary processes such as hybridization between cultivated populations and wild progenitors or processes driving divergence among closely related species (e.g., [61]). In the case of grape, the wild progenitor and geographic origins of domesticated European grapevine are well known [53, 57, 79]. However, lesser-known components of grapevine evolutionary biology include relationships among species that are used as parents in hybrid crosses (e.g., *V. aestivalis, V. labrusca, V. vinifera*) or those that are used as rootstocks (e.g., *V. cinerea var. helleri, V. riparia, V. rupestris*). For example, grafting *vinifera* scions to rootstocks of non-*vinifera* species dates back to the mid-1900’s when the phylloxera invasion of France threatened to destroy the French grape crop [80]. Rootstocks used to support *vinifera* come almost exclusively from North American species [81]. Recently, hybrids between *V. cinerea var. helleri* and *V. riparia* or *V. rupestris* have been used to produce rootstock that is easy to propagate and that can withstand challenging abiotic conditions [80]. Data presented here demonstrate that these important rootstock species occur in different clades within the North American subgenus *Vitis: V. cinerea* is most closely related to *V. vulpina*, while *V. riparia* and *V. rupestris* form a clade together with *V. acerifolia*. Building upon this phylogenetic framework, future work characterizing the diversity of abiotic and biotic pressures faced by natural populations and the genetic basis of abiotic and biotic stress response, will expand understanding of evolution and adaptation in *Vitis*, and may provide molecular tools to facilitate marker-assisted selection for rootstocks.

Conclusions

This study demonstrates that ascertainment bias presents a significant challenge for the application of SNP arrays in phylogenetic reconstruction; however, the effects of ascertainment bias can be minimized by using hybridization intensity rather than SNP genotype calls. We demonstrate that the *Vitis9KSNP* array, a panel developed based on variation discovered in 11 accessions of *vinifera* and single accessions of six other *Vitis* species, can be used to screen variation in a broad sample of over 1100 samples representing 18 taxa. Resulting data confirm relationships identified in previous studies (e.g., *V. riparia+V. rupestris, vinifera+rupestris*) and suggest novel affinities among taxa (e.g., *V. aestivalis+V. labrusca* and *V. cinerea+V. vulpina*). This phylogenomic analysis of *Vitis* demonstrates the utility of SNP arrays in phylogeny reconstruction and expands current understanding of relationships among North American subgenus *Vitis* species.

Supporting Information

Table S1 Comparison of the performance of various genetic distance measures based on hybridization intensity. The values within each cell represent a measure of the difference between tree topologies generated from the summary statistics found in the respective row and column names. The distance measure between the pair of phylogenetic trees is the difference between tree topologies generated from the phylogeny reconstruction and expands current understanding of relationships among North American subgenus *Vitis* species. (DOCX)
Acknowledgments

We thank the USDA staff that maintains the USDA grape germplasm collections. The authors acknowledge the contributions Kyle Gardner and Jeff Franklin, and members of the Miller Lab at Saint Louis University for helpful comments on previous versions of this manuscript.

References

Author Contributions

Conceived and designed the experiments: GZ CS ES B MA SM. Performed the experiments: HS SM. Analyzed the data: NM AM SM. Contributed reagents/materials/analysis tools: GZ CS HS BP MA ESB. Wrote the paper: AM SM.

