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Estimating the effects of detection heterogeneity and overdispersion
on trends estimated from avian point counts
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Abstract. Point counts are a common method for sampling avian distribution and
abundance. Although methods for estimating detection probabilities are available, many
analyses use raw counts and do not correct for detectability. We use a removal model of
detection within an N-mixture approach to estimate abundance trends corrected for imperfect
detection. We compare the corrected trend estimates to those estimated from raw counts for 16
species using 15 years of monitoring data on three national forests in the western Great Lakes,
USA. We also tested the effects of overdispersion by modeling both counts and removal
mixtures under three statistical distributions: Poisson, zero-inflated Poisson, and negative
binomial. For most species, the removal model produced estimates of detection probability
that conformed to expectations. For many species, but not all, estimates of trends were similar
regardless of statistical distribution or method of analysis. Within a given combination of
likelihood (counts vs. mixtures) and statistical distribution, trends usually differed by both
stand type and national forest, with species showing declines in some stand types and increases
in others. For three species, Brown Creeper, Yellow-rumped Warbler, and Black-throated
Green Warbler, temporal patterns in detectability resulted in substantial differences in
estimated trends under the removal mixtures compared to the analysis of raw counts. Overall,
we found that the zero-inflated Poisson was the best distribution for our data, although the
Poisson or negative binomial performed better for a few species. The similarity in estimated
trends that we observed among counts and removal mixtures was probably a result of both
experimental design and sampling effort. First, the study was originally designed to avoid
confounding observer effects with habitats or time. Second, our time series is relatively long
and our sample sizes within years are large.

Key words: abundance indices; avian point counts; detection heterogeneity; overdispersion; point counts;
removal sampling.

INTRODUCTION

Understanding the distribution and abundance of

animals is a fundamental goal of basic ecological

research. Knowledge of how these factors depend on

environmental conditions and how they are affected by

anthropogenic activities is also a key goal in applied

ecology and conservation biology. However, estimating

abundance and density is difficult because many animals

are cryptic and survey methods require observers with

specialized skills such as knowledge of bird song. Due in

part to these difficulties, it is rarely possible to count all

animals present in a survey area; typically, we do not

know what proportion of the total number of individ-

uals present are actually counted. Thus it is easy to

question the utility of incomplete count data (Rosen-

stock et al. 2002).

Point counts are a common method for sampling

avian distribution and abundance. Although protocols

vary, the basic method involves recording all birds seen

or heard within a specified time limit, usually 3, 5, or 10

minutes, often within specified distance classes (Rey-

nolds et al. 1980, Howe et al. 1997). Common criticisms

of point count methods include bias in selection of

sampling locations (Bart et al. 1995, Hanowski and

Niemi 1995a), bias due to variation in observer ability

(Sauer et al. 1994), and failure to account for detection

heterogeneity (Burnham 1981, Johnson 1995). The latter

topic has been of considerable interest among ornithol-

ogists recently. Although some have expressed skepti-

cism over the practicality of routinely estimating

detectability (Verner 1985), numerous sampling proto-

cols have been proposed that allow estimation of

detection probabilities with point count data. Johnson

(2008) reviews the assumptions and potential shortcom-

ings of these methods in comparison to naı̈ve estimation

of trends using only the number of birds counted.
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How does imperfect detection affect point count data?

A sufficient condition underpinning the robust
estimation of trends from uncorrected point counts is

that the number of birds counted is strongly correlated
with the actual number of birds present, e.g., E(C )¼pN,

where C is the number of birds counted, p is the
detection probability, and N is true abundance (Johnson

2008). The validity of this assumption is often asserted
to depend, in turn, on constant detection probability

(Barker and Sauer 1995, Nichols et al. 2000, Rosenstock
et al. 2002, Williams et al. 2002). However, Johnson

(2008) shows that two weaker conditions are sufficient
for valid trend inference: (1) that p be independent of N,

and (2) that the variance of p be ‘‘small’’ in relation to
the variance of N (Johnson 2008). Implicit in condition i,

is the further requirement that p be independent of any
covariate (i.e., time) on which N depends.

If one of the above two conditions is violated, for
example, if there is a trend in detection probability, then

trends in counts may not reflect trends in true
abundance. Furthermore, even when the two conditions

do hold, plotted trend lines may not, in general, be
accurate descriptions of mean abundance, especially for
species with low detectability. Thus trend analysis using

counts, even when justified, provides limited informa-
tion about abundance, which is an ecological state

variable of primary interest.
Royle (2004a, b) showed how a general ‘‘N-mixture’’

approach can be used to jointly estimate abundance and
detection probability, where the resulting abundance

estimate is corrected for imperfect detection. This
requires an assumed statistical distribution for site-

specific abundance, for example Poisson or negative
binomial (Royle 2004b, Royle et al. 2004), and is

intuitively appealing because it is relatively straightfor-
ward to implement using most sampling protocols that

allow estimation of detection probabilities. However, an
important assumption is that N and p are conditionally

independent, which, if satisfied, may also justify the
index assumption (Johnson 2008). Thus if the mixture

approach is to provide different trend estimates than
naı̈ve analysis of counts, such differences must arise
through trends in detection probability.

When and why are count data overdispersed?

Although the Poisson distribution is often considered
the natural distribution for animal abundance (Hilborn

and Mangel 1997), the equality of mean and variance
that is specified under a Poisson distribution is often

violated in animal count data (White and Bennetts
1996). When the observed variance exceeds the mean,

the data are said to be overdispersed (here and hereafter
we use ‘‘overdispersion’’ in reference to the Poisson

expectation). Imperfect detection of Poisson-distributed
abundance may result in either overdispersion or

underdispersion, depending on the distribution of
detection probabilities. If N ; Poisson(k) then E(C ) ¼
E( p)k. However, Var(C )¼Var( p) k(1þ k)þ kE( p)2. In

general, this will not be equal to E( p)k. For example, if p

is constant, Var(C ) ¼ kp2, and counts will be under-

dispersed. More generally, counts will be overdispersed

when

VarðpÞ. EðpÞ½1� EðpÞ�
1þ k

:

Thus detection heterogeneity is more likely to cause

overdispersion in counts of abundant species (large k)
with either high or low mean detection probability.

Environmental heterogeneity may also result in over-

dispersion if it is not controlled through the use of

appropriate covariates. For an overall abundance

distribution that is a mixture of Poisson-distributed

subpopulations (Ni ; Poisson(ki )), E(N ) ¼ Ei(k).
However, Var(N ) ¼ Ei(k) þ Vari(k). Therefore Poisson

mixtures are overdispersed by the amount Vari(k). For
example, an equal number of (perfectly detected) counts

among two populations, with k1¼4 and k2¼6, will have

E(N ) ¼ 5, but Var(N ) ¼ 6. Thus, environmental

heterogeneity will always result in overdispersion if

subpopulations are conditionally Poisson distributed

and the environmental effects are not incorporated into

covariate analysis.

The negative binomial distribution is a mixture of

Poisson distributions that is often used for modeling

overdispersed count data (Johnson et al. 2005). How-

ever, Kéry et al. (2005) argued that the negative

binomial distribution may not be the most appropriate

distribution for counts of territorial birds. Point count

data may also show a different pattern of overdispersion

if some subset of counts occurs on unsuitable habitat in

which the species is absent. In this case, a zero-inflated

Poisson distribution may better capture the pattern of

overdispersion (Johnson et al. 2005). Although over-

dispersion generally gets less attention than detectability

in point counts, it may also influence conclusions about

abundance and trends. Ver Hoef and Boveng (2007)

compared covariate models of harbor seal abundance

using quasi-Poisson and negative binomial models.

Covariate patterns differed considerably between the

two distributional assumptions and the authors con-

cluded the quasi-Poisson was a better assumption for

their data.

Objectives

Here we compare trends inferred from analysis of raw

point counts to those inferred using the N-mixture

approach with the removal model of Farnsworth et al.

(2002). We use hierarchical models to explore the

dependence of counts, abundance, detection probability,

and overdispersion on several covariates to investigate

the potential for obtaining conflicting estimates of

trends when correcting for detection probability and

overdispersion or not. We apply the models to 16 bird

species using a large sample (17 127 surveys) of point

counts conducted over 16 years (mean 1070 points

surveyed per year) in three national forests in the
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western Great Lakes region, USA (Fig. 1). We have five

main objectives: (1) to develop a statistical model for

preliminary estimation of trends, corrected for detection

on the three national forest sites; (2) to test the model

using empirical data from species that vary in abun-

dance, trends, and detection probability; (3) to deter-

mine whether the removal mixtures give a substantially

different estimate of landscape-scale trends than the

analysis of raw counts; (4) to investigate the suitability

of the Poisson, zero-inflated Poisson, and negative

binomial distributions as the underlying abundance

distribution for our count data; and (5) to inform the

decision-making process about whether and how to

control for detection heterogeneity in this ongoing

monitoring program.

METHODS

Site selection and field methods

Data for the analyses presented in this manuscript

come from a long-term monitoring program for forest

birds in three national forests of the western Great

Lakes (Hanowski and Niemi 1995b). Experimental

design considerations for the distribution and abun-

dance of samples have been described at length

elsewhere (Hanowski and Niemi 1995b) and we briefly

summarize the salient points here. Sampling locations

were placed across the forests following a stratified

random design, with stratum definitions depending on

both dominant tree species and stocking density

according to existing national forest inventories. For

each national forest, a set of stands (minimum area �16
ha) was selected from each stratum (hereafter referred to

as stand types) so that the final proportion of stands of

each type was equal to the proportion of that stand type

within its respective national forest. In 1991 and 1992 an

initial set of 133, 135, and 169 sample stands were

established in the Chequamegon, Chippewa, and Supe-

rior National Forests (Fig. 1), respectively, and have

been monitored annually, with a few (,5%) additions

and deletions, until the present. Stands are large enough

to accommodate three sampling points a minimum of

220 m apart. However, even though attention was

devoted to avoid double-counting of individual birds,

we include here only the two most distal sampling points

in each stand.

At each point between June and early July, 10-minute

point counts were conducted (Howe et al. 1997) by

trained observers (see Hanowski and Niemi 1995b) from

approximately 0.5 h before to 4 h after sunrise on days

with little wind (,15 km/h) and little or no precipita-

tion. The counting protocol changed in the early years of

the study to incorporate unlimited radius counts. In the

first three years of the study, all birds within 100 m of

the point were recorded. Beginning in 1995, all birds

were recorded regardless of distance, but were classified

as being greater or less than 100 m from the point. Birds

were classified by first detection into the three temporal

intervals defined by upper bounds at the end of 3, 5, and

10 minutes (Ralph et al. 1995, Farnsworth et al. 2002).

Thus the total number of birds counted at a given site is

divided into three counts (x1, x2, x3 � 0) corresponding

to the three initial detection intervals. Each observer

sampled a similar number of stands of each stand type to

avoid observer differences within stand types.

Likelihoods

For the analysis of counts we assumed that the total

number of birds counted at site i (Ci ¼ xi1 þ xi2 þ xi3)

followed a Poisson, zero-inflated Poisson (ZIP), or a

negative binomial (NB) distribution. Specific forms for

FIG. 1. Map of western Great Lakes, USA, showing location of the three national forests (NF) surveyed.
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all of the likelihoods, log-likelihoods, and gradients are

provided in Appendix A. Assuming that counts are

Poisson distributed with mean k, then the expected

variance of C is also k. Under a ZIP distribution, with

abundance parameter k and zero-inflation parameter /,
the expected count C is l ¼ k(1 � /) and the expected

variance is l(1þ k/), whereas under an NB distribution

with mean l and overdispersion parameter k, the

expected variance is l þ (l2/k) (Hilborn and Mangel

1997). Thus the ZIP and NB distributions both specify

greater variance than their mean, although the structure

of the variance and its relationship to the mean differ

from each other. For the ZIP distribution, variance

grows with / and k, whereas for the NB it grows with l
and the inverse of k.

Farnsworth et al. (2002) showed how the temporally

stratified counts used for this study allow estimation of

detection probabilities by application of a removal

model. Their model has two parameters (c and q). The

first parameter, c, is the probability that a bird is hard to

detect, and all easy-to-detect birds are assumed to be

detected during the first three minutes of sampling. The

second parameter, q, is the probability that a hard-to-

detect bird is not detected during one minute of sampling

(Farnsworth et al. 2002). Thus the overall probability

that a bird is detected during 10 minutes of sampling is 1

� cq10, which we will refer to throughout the article as

the detection probability ( p). Farnsworth et al. (2002)

listed five assumptions underlying the removal model,

which we abbreviate as follows, (1) population closure,

(2) no double counting, (3) easy-to-detect birds are

detected in the first 3 minutes, (4) q is constant within

counts, and (5) observers correctly assign birds to

distance classes. To these we would add a sixth

assumption that birds are correctly identified to species.

Royle (2004a) elaborated a likelihood approach for

estimating abundance conditional on both an assumed

distribution for abundance and an underlying detection

process (in this case the removal model). This frame-

work allows simultaneous estimation of detection

parameters (c and q), abundance (l or k) and over-

dispersion (/ or k), conditional on the temporally

stratified counts (x1, x2, and x3). For these analyses we

maximized Royle’s (2004a:381) integrated likelihood

over our point count data using MATLAB’s (Math-

Works 2007) optimization toolbox with Poisson, ZIP,

and NB assumptions, as previously described.

To compare trend inference for counts vs. abundance

under each of these six likelihoods (‘‘Poisson counts,’’

‘‘ZIP counts,’’ ‘‘NB counts,’’ ‘‘Poisson mixture,’’ ‘‘ZIP

mixture,’’ and ‘‘NB mixture’’) we chose 16 songbirds

that we thought would vary in detectability, abundance,

trends, and stand affinities (Appendix B).

Hierarchical models

For all six likelihoods we specified an abundance

parameter from each distribution as a log-linear

function of covariates (Appendix B). For unadjusted

counts, the resulting models were Poisson regression,

zero-inflated Poisson regression, and negative binomial

regression, respectively. (Although the log-link is not the

canonical link for negative binomial regression, it is

nevertheless the most commonly used link function;

Hilbe 2007). This approach was also used to investigate

trends in the detection parameters (c, q) and dependence

of the overdispersion parameters (k and /) on stand

types. For c, q, and / we used a logit-link, and for k, l,
and k we used a log-link. Throughout this paper we treat

c, q, k, and / as nuisance parameters; our interest in

them is restricted to their potential influence on

inference about abundance and trends.

Strategy for modeling abundance

For all hierarchical models we adopt the notation

hfyg, indicating that likelihood parameter ‘‘h’’ is taken

to be a function of covariate ‘‘y,’’ where the dot notation

‘‘hf�g’’ indicates that the parameter is assumed to be

constant. When referencing a model for an abundance

parameter we will generally write ‘‘afyg,’’ where a

indicates k for the Poisson and ZIP models and l for the

NB models. For each species, under each of the six

likelihoods, we compared 24 models that specified

abundance as varying functions of stand type, national

forest, and year (Appendix B). Lowland deciduous

forest was not surveyed in Superior National Forest

because it is a rare type and thus is not represented in

these data. Because we were certain that mean abun-

dance would vary with either stand type, afstg, or

national forest, affrg, all models in the full model set

included at least one of these two as a categorical

covariate (Appendix B). We also hypothesized that

abundance would vary with year, but the most

interesting annual variation would be a trend (either

linear or quadratic). Thus, when year was included as a

covariate to abundance, we specified it as a continuous

variable, afyqg (Appendix B). We also included models

with quadratic trends, afyq þ yq2g. We further

considered a limited number of models containing

interactions, particularly interactions between national

forest and stand type, affr 3 stg, between either stand

type and year, afyq(st)g, or forest and year, afyq(fr)g,
and two models with three-way interactions, afyq(fr 3

st)g, afyq2(fr3 st)g (Appendix B). Although the models

with interactions, particularly the three-way interac-

tions, contained many parameters (Appendix B), previ-

ous work had suggested that some species would likely

show discordant trends at regional scales (Blake et al.

1994).

Strategy for modeling detection probability

To limit the number of detection probability models,

we always optimized the same covariate function for q as

was used for c. Thus pfyqg [ cfyqg, qfyqg. To more

closely examine the pattern of annual variation in

detection probability, we specified year first as a

continuous covariate, pfyqg, and second as a categorical
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covariate pfycg. However, we also suspected that for

some of our 16 selected species there would not be

enough data to fully parameterize annual variation in

detection, and we also included models with constant

detection probabilities across years, pf�g (Appendix B).

We did not consider models with c constrained to unity,

which we deemed implausible.

Strategy for modeling overdispersion

We assumed that overdispersion in our data was

caused primarily through unexplained environmental

heterogeneity and that this might differ across our broad

stand types. Therefore overdispersion parameters were

modeled either as fixed across all stand types, kf�g, /f�g,
or separately for each stand in each forest kffr 3 stg,
/ffr 3 stg. In preliminary analyses we had difficulty

optimizing the NB distribution with large k (little

overdispersion) and in general we found it more efficient

to optimize its inverse (i.e., set r¼ 1/k and substitute 1/r

into the NB likelihoods). With covariate models this was

achieved by changing the sign of the log-link and the

gradient of the link function (Appendix A). For both

ZIP and NB models, upper and lower limits were placed

on u and k to facilitate convergence. In most cases an

optimal solution was found within this range and we

took this to be the global optimum (MLE, maximum

likelihood estimate). In a few cases, the optimal solution

occurred at one of the imposed limits.

Model selection and comparisons

Our final model sets for each of our six likelihood

approaches contained varying multiples of the set of 24

abundance models (Table 1). For each species and each

likelihood we used Akaike’s Information Criterion, AIC

(Akaike 1973), to rank all models; we report only the

minimal set of models that account for �99% of model

weights, where weights are calculated following Burn-

ham and Anderson (2002). For all likelihoods, all

combinatoric terms were retained to allow comparison

of AIC values across Poisson, ZIP, and NB distributions

that specify the same response data (i.e., to compare the

raw count models to each other and to compare the

removal mixtures to each other across the three

distributional assumptions, Burnham and Anderson

2002:318).

RESULTS

Presentation of results

Here we will present selected results to highlight

important patterns. Full results for all species are
provided in online appendices. We begin with a brief
survey of basic patterns of model selection. We then
provide detailed results about detection probability,

overdispersion, and finally, abundance patterns in
relation to observed results for detection and over-
dispersion. All statistical computing was done in

MATLAB 7.4 (MathWorks 2007). Note that plots of
overdispersion (k) for the NB distribution show r¼ 1/k,
which is how the NB likelihoods were optimized.

Visually this also facilitates comparison of the ZIP
results to NB results because / and r should both
increase with variance in their respective distributions.

General distributional and model selection patterns

For all 16 species, the best ZIP count model had a
lower AIC than the best Poisson or NB count models

(Table 1). For two species (Red-eyed Vireo and Black-
and-white Warbler) the best Poisson mixture had a
lower AIC than the best ZIP or NB mixture. Similarly,

for two species (Yellow-rumped Warbler and White-
throated Sparrow) the best NB mixture had a lower AIC
score than the best Poisson or ZIP mixture. The average

number of models per species required to account for at
least 99% of model weight was greatest for ZIP models
(both counts and mixtures) and least for Poisson models
(both counts and mixtures; Table 1). Within distribu-

tions, the detection mixtures required a larger average
number of models per species than the count models to
account for at least 99% of model weight (Table 1). The

standard deviation of the number of models required to
account for at least 99% of model weight followed the
same patterns (Table 1).

Detection probabilities

The total number of detections by species varied

almost 20-fold, from a minimum of 1223 (Golden-

TABLE 1. Distribution parameters, number of models considered, best performing distribution, and mean number of models
required to account for 99% of model weights among 16 bird species analyzed in national forests of the western Great Lakes,
USA.

Metric

Counts Mixtures

Poisson ZIP NB Poisson ZIP NB

Abundance parameter k k l k k l
Detection parameters n/a n/a n/a c, q c, q c, q
Overdispersion parameter n/a / k n/a / k
No. models considered 24 48 48 72 144 144
Best distribution (of 16 spp.) 0 16 0 2 12 2
Mean no. models in ‘‘best’’ set (SD) 1.3 (0.6) 2.4 (1.9) 1.9 (1.1) 1.9 (1.0) 3.5 (3.9) 2.4 (1.4)

Notes: The influence of detection, heterogeneity, and overdispersion on estimated trends was assessed by comparing trend
estimates from raw counts with corrected trend estimates from removal mixtures, modeled under Poisson, zero-inflated Poisson,
and negative binomial statistical distributions; n/a means not applicable. Full likelihood details are provided in Appendix A.
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FIG. 2. Fitted overall detection probability (mean 6 SE) by year, 1992–2006, for 16 bird species surveyed in the three national
forests using three removal mixtures modeled under Poisson, zero-inflated Poisson (ZIP), and negative binomial (NB) statistical
distributions.
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FIG. 2. Continued.
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crowned Kinglet) to a maximum of 21 039 (Ovenbird;

Appendix B). The estimated overall probability that a

species was detected during 10 minutes of sampling (p̂¼
1 � ĉq̂10) ranged from 0.105 (Brown Creeper, 1997,

Poisson mixture) to 0.981 (Winter Wren, 1993, NB

mixture; Fig. 2). Regardless of whether the underlying

abundance distribution was assumed to be Poisson, ZIP,

or NB, the best model for detection probability always

included yearly variation as a categorical covariate

(Appendix B). The models pf�g and pfyqg (i.e.,

detection probability is constant or has log-linear trend,

respectively) were never competitive. Fig. 2 shows the

magnitude of annual variation in estimated detection

probabilities for all 16 species. Year-to-year variation in

detection probability was large, sometimes extreme (e.g.,

Golden-crowned Kinglet; Fig. 2g). Over the full 15

years, no species showed monotonic trends in detection

probability, although for some (e.g., Black-capped

Chickadee, Nashville Warbler, and Black-throated

Green Warbler; Fig. 2c, i, k) the model pfyqg would

show a decreasing trend in detection probability. Over

shorter timescales (3–5 years) fitted detection probabil-

ities often showed alternating patterns of steep declines

and increases (Fig. 2). In general, the fitted detection

probabilities were little influenced by the assumed

distribution for abundance (close agreement of solid,

dashed, and dotted lines; Fig. 2).

Overdispersion

Estimates of zero inflation (/) were usually congruent,
and often virtually identical, between ZIP counts and

ZIP mixtures (Fig. 3). A notable exception occurred

with Red-breasted Nuthatch (Fig. 3c). Fitted values of /
ranged from 0.007 (the lower estimation constraint,

Red-eyed Vireo and Winter Wren, all stand types, Fig.

3b) to 0.993 (the upper estimation constraint, Golden-

crowned Kinglet, deciduous forest stands, Appendix C).

Patterns of zero inflation among stand types generally

differed among forests (Fig. 3). Visual comparison of

patterns suggests a greater similarity between Chequa-

megon and Chippewa NF than between either of those

two forests and Superior NF (Fig. 3, Appendix C).

As with zero inflation, estimates of r (1/k) were often

congruent between NB counts and NB mixtures (Fig. 4).

Fitted values of r varied considerably from 0.01 (the

lower estimation constraint, little or no overdispersion,

Red-eyed Vireo, Winter Wren, Black-and-white War-

bler; Fig. 4b, Appendix C) to approximately 54.6 (the

FIG. 3. Zero-inflation patterns (mean 6 SE) for selected species by national forest (NF: Chequamegon, Chippewa, Superior)
and stand type (upland deciduous, UD; upland conifer, UC; lowland conifer, LC; upland mixed, UM; lowland deciduous, LD).
The y-axis gives the actual estimated value of the zero-inflation parameter (/), which can be interpreted as the proportion of sites
that are ‘‘unsuitable.’’
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upper estimation constraint, extreme overdispersion,

Golden-crowned Kinglet, deciduous forest stands,

Chippewa NF, Appendix C). Estimated patterns of

overdispersion varied among forests, and the similarity

between Chequamegon and Chippewa NFs for zero

inflation did not appear to hold for NB overdispersion.

In some cases, patterns of NB overdispersion were

closely congruent to patterns of zero inflation (e.g.,

White-throated Sparrow; Figs. 3d and 4d), but this was

not generally the case.

The two species for which the best Poisson mixture

had a lower AIC score (Red-eyed Vireo and Black-and-

white Warbler) gave estimates of r that were virtually

zero across the full time series (Fig. 4b, Appendix C).

For Red-eyed Vireo, zero inflation was also close to

zero, although this was not true for Black-and-white

Warbler (Appendix C). For the two species for which

the best NB mixture had a lower AIC score (Yellow-

rumped Warbler and White-throated Sparrow, Appen-

dix C, Figs. 3d and 4d) patterns of overdispersion (r)

were similar to patterns for /, although in neither case

(ZIP or NB mixtures) did the fitted values represent

extremes among all species analyzed.

For most species showing high zero inflation (large /)
and/or high overdispersion (large r), the estimated value

of the respective parameter was usually smaller for the

best mixture than it was under the respective count

model (Figs. 3 and 4). This suggests that some

overdispersion does result from detection heterogeneity.

However, we did not see any evidence that controlling

for detection heterogeneity effectively removed over-

dispersion altogether.

Abundance

Estimates of mean counts (k, l) ranged from zero

(Least Flycatcher, upland mixed forest, all years,

Chippewa NF, all distributions) to 2.35 (Ovenbird, all

years upland conifer, Chequamegon NF, ZIP counts).

Estimates of mean detection-corrected abundance (k, l)
ranged from zero (Least Flycatcher, upland mixed

forest, all years, Chippewa NF, all distributions) to

5.10 (Black-throated Green Warbler, 2006, upland

mixed forest, Chippewa NF, Poisson mixture). Of the

24 abundance models considered (Appendix B), all but

two (afst þ frg and afst þ fr þ yqg) occurred at least

once in the best model set for at least one combination

FIG. 4. Overdispersion patterns (mean 6 SE) for selected species by national forest and stand type. Top and bottom labels are
as in Fig. 3. The estimated parameter k is the negative binomial overdispersion parameter. Variance in the negative binomial
distribution grows with r, the inverse of k.
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of species and likelihood (Table 2). However, only four

abundance models occurred in the best model set with a

frequency greater than 0.05 (Table 2) and these four

models always included the stand type 3 forest

interaction, afst 3 frg. These four models also always

included a nested linear trend, either within forest or

within the stand type 3 forest interaction (Table 2).

Plotted trends can be quickly separated into two

classes. First, for some species, estimated trends differed

little between distributions (e.g., Ovenbird; Fig. 5) or

between count models vs. removal mixtures (Red-eyed

Vireo; Fig. 6) or both (Least Flycatcher; Figs. 7–9). The

three most commonly counted species (e.g., Red-eyed

Vireo, Nashville Warbler, and Ovenbird) fall in this

group (Appendix C). Second, for other species, plotted

trends differed by distributional assumption and likeli-

hood method in at least one national forest (Brown

Creeper, Fig. 10; Veery, Appendix C). In general, when

differences occurred, the ZIP model trends usually

differed from the Poisson or NB trends more than the

latter two differed from each other (e.g., Least

Flycatcher, Figs. 7–9; Black-capped Chickadee, Red-

breasted Nuthatch, and Blackburnian Warbler, Appen-

dix C).

Two consistent upward shifts can be observed on all

trend graphs. First, within distributions, the mixtures

are shifted upward relative to the count models,

reflecting the correction for imperfect detection that

occurs with the removal mixtures. As you would expect,

this shift is greatest for those species with generally

lower estimated detection probabilities (e.g., Red-

breasted Nuthatch, Brown Creeper, Veery, and White-

throated Sparrow, Appendix C). However, it is also

evident in the most commonly detected species (Oven-

bird, Red-eyed Vireo, Figs. 5 and 6; Nashville Warbler,

Appendix C). A second shift can be seen in most

comparisons between ZIP trends and either Poisson or

NB trends. The most conspicuous example occurs with

Least Flycatcher (Figs. 7–9). This upward shift occurs

because a substantial fraction of sites with zero counts

(i.e., /) is not included in the plotted abundance

distribution.

AIC often selected the same structural abundance

model as the best model across distributions and across

count vs. mixture models. Extreme examples of this

occurred with Nashville Warbler and Ovenbird, for

which a single abundance model accounted for more

than 99% of model weight in all six likelihood groups

(Appendix B). These are two of the three most

commonly counted species in our study. The greatest

exceptions to this pattern usually occurred in compar-

isons between ZIP models and Poisson or NB models.

For two species (Black-capped Chickadee and Brown

Creeper), the most parsimonious ZIP model (both count

and mixture) included no effect of stand type on

abundance (Appendix B). Thus under the ZIP models

for these two cavity-nesting species, all differences

among stand types were accounted for by the zero-

inflation factor (Fig. 10, Appendix C).

Three species, Brown Creeper, Yellow-rumped War-

bler, and Black-throated Green Warbler, showed

temporal patterns of detection that did have a substan-

tial effect on the resulting estimate of abundance trends.

For Brown Creeper, the best detection model estimated

relatively high detection probability early and late in the

time series, but low detection probability in between

(Appendix C). This changed the relatively flat count-

estimated trends to hump-shaped trends in the mixtures

(Fig. 10). The opposite pattern occurred with Yellow-

rumped Warbler (Appendix C). Black-throated Green

Warbler showed a general trend of decreasing detection

probability over the 15 years of the study (Fig. 2k). This

resulted in a considerable correction in the abundance

curve at the end of the time series for the removal

mixtures, although the count models also showed an

upward inflection at the end of the time series (Appendix

C). The Black-throated Green Warbler results also

illustrate a more general pattern across species, in which

increases or decreases in detection probability at the

beginning or end of the time series imposed much

stronger pattern on the corrected abundance trajectories

than when they occurred in the middle of the time series

(Appendix C).

TABLE 2. Frequency of occurrence of bird abundance models
in the best model set.

Abundance model Occurrences Frequency

afst 3 fr þ yq(st 3 fr) þ yq2(st 3 fr)g 74 0.35
afst 3 fr þ yq(fr) þ yq2(fr)g 48 0.23
afst 3 fr þ yq(st 3 fr)g 20 0.09
afst 3 fr þ yq(fr)g 15 0.07
afs tþ fr þ yq(fr) þ yq2(fr)g 7 0.03
afst 3 fr þ yq þ yq2g 6 0.03
affr þ yq(fr) þ yq2(fr)g 5 0.02
afst þ fr þ yq(st) þ yq2(st)g 4 0.02
afst þ yq þ yq2g 4 0.02
afst þ yq(st) þ yq2(st)g 4 0.02
afst þ fr þ yq(fr)g 4 0.02
afst 3 fr þ yqg 4 0.02
affr þ yq(fr)g 3 0.01
afst þ fr þ yq þ yq2g 3 0.01
afst þ fr þ yq(st)g 3 0.01
affr þ yq þ yq2g 2 0.01
afst þ yq(st)g 2 0.01
affrg 1 ,0.01
affr þ yqg 1 ,0.01
afstg 1 ,0.01
afst 3 frg 1 ,0.01
afst þ yqg 1 ,0.01
Total 213 1

Notes: Model terms are a, abundance; st, stand type (upland
deciduous, upland conifer, lowland conifer, upland mixed, and
lowland deciduous); fr, national forest (Chequamegon, Chip-
pewa, Superior); yq, year (1992–2006), treated as a quantitative
variable; and yc, year treated as a categorical variable; f�g
indicates an intercept-only model. An interaction between two
covariates is indicated by ‘‘3,’’ yq(fr) indicates that the year
effect is estimated separately for each national forest. All
interactive models also contained the corresponding main
effects, and all models contained a global intercept.
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DISCUSSION

Detection probabilities

For all species in all removal mixtures, the best model

for detection probability included annual variation as a

categorical effect, pfycg. Neither the constant model,

pf�g, nor one of continuous annual variation, pfyqg,
was competitive. Therefore strongly monotonic trends in

detection probability did not appear to occur over the

full 15-year time series. Nevertheless, some patterns in

detection probability did result in disagreement between

trends in counts and trends in removal mixtures. Also,

there was large annual variation in detection probability

(Fig. 2), which would tend toward violations of

Johnson’s (2008) second condition that trends in counts

should accurately reflect trends in abundance when

Var( p) is small in relation to Var(N ). The range of

variability that we observed using removal estimates of

detectability is similar to that reported by Pacifici et al.

(2008) using an experimental bird-song simulation

system in conjunction with distance estimation.

Several species showed a conspicuous pattern of high

detectability during the first three years of sampling

(Fig. 2). This might be due to a change in sampling

protocol that occurred between the 1994 and 1995

surveys. During the first three years observers were

instructed to count only those birds within 100 m of

themselves and to ignore birds outside this detection

radius. Beginning in 1995, observers were instructed to

count all birds, regardless of distance, but to record

whether or not the bird was within 100 m. For 1995 and

all subsequent years, we included only detections

classified within 100 m, so the data should be consistent

with 1992–1994. However, it is possible that, when told

to ignore birds outside the 100-m detection radius,

observers were more likely to classify birds close to the

boundary as being inside rather than outside the

boundary.

FIG. 5. Ovenbird trends (number of birds per point, mean 6 SE) in Superior National Forest, Minnesota, USA, in different
stand types, for counts vs. mixture models. The y-axis shows trends in the expected number of birds per point under the three
assumed distributions (Poisson, zero-inflated Poisson, and negative binomial). Count models use only birds counted to fit the
distributions, whereas the mixture models correct for imperfect detection.
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If real, this heaping effect may be a good example of

the potential for methodology to interact with observer

psychology to result in misclassification of birds as being

within the 100-m detection radius (Rosenstock et al.

2002). However, if the heaping effect occurred, it did not

appear to have a great effect on inference about

abundance, probably due to the relative length of our

total time series compared to the three-year period

during which heaping may have occurred. Nevertheless,

our results support the recommendation of Rosenstock

et al. (2002) that when performing variable-distance

circular point counts, an unlimited distance ring should

be included even if the corresponding data are not used.

Our results reinforce this recommendation regardless of

whether distance sampling per se is the intended

methodology.

The removal model

Strictly speaking, we cannot be certain that any of the

six assumptions that we have listed are met in our data

(Alldredge et al. 2007a, Johnson 2008), although we

believe any violations were minor. Indeed, we have

presented evidence for heaping during the first three

years of our study that suggests observers were not

correctly classifying birds to within 100 m of the

observer, but this is probably much less an issue since

1995. Of the six assumptions listed in Methods, the two

that are unique to the removal likelihood are probably

the most questionable (all easy-to-detect birds detected

in the first three minutes, and constant q). These

assumptions could be relaxed under the capture–

recapture formulation of the time-to-detection methods

described by Alldredge et al. (2007a, c). However, our

data were not collected in a way that will allow

comparative analyses; the original design motivation

was intended for comparing data across studies using

different sampling durations, not for estimating detec-

tion probability. Nevertheless the analyses do recover

information about detectability that conforms to our

expectations. Birds with conspicuous, loud songs are

generally classified with high detection probability and

birds with high-pitched, quiet songs are usually classified

FIG. 6. Red-eyed Vireo trends (number of birds per point, mean 6 SE) in Chippewa National Forest, Minnesota, USA.
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with low detection probability (Fig. 2), although the

latter species usually have more pronounced annual

variation in detectability.

Overdispersion

Two patterns in our results reinforce our hypothesis

that overdispersion in our point counts is caused by

environmental heterogeneity rather than detection het-

erogeneity. First, common and highly detectable species

are less likely to show overdispersion than are rare

and/or difficult to detect species. This is in contradiction

to the expectation based on the derived relationship

between variance in detection probability and abun-

dance presented earlier:

VarðpÞ. EðpÞ½1� EðpÞ�
1þ k

� �
:

Second, the ZIP distribution was preferred for count

analyses for all species and for mixtures for most (75%)

species. Thus there was a clear excess of zero counts in

our data, suggesting that some proportion of habitat

(often substantial) within our broad stand types was

unsuitable. Least Flycatcher and Golden-crowned

Kinglet are extreme examples (Figs. 7–9, Appendix C).

The high performance of the ZIP distribution also has

implications for occupancy modeling. In the ZIP

mixtures there are three classes of points at which zero

counts are expected. First, there are the / empty sites,

which we loosely attributed to the presence of unsuitable

habitat within modeled covariate classes (national forest

and stand type). Second, of the 1 � / suitable sites, a

further fraction (e�k) are expected to be unoccupied.

Finally, for occupied sites with n birds present, no birds

will be detected at approximately (1 � p)n ¼ (cq10)n of

them. If these parameters (/, c, q, and k) depend on

different factors, as seems likely, then any model that

tries to predict distributions using simple presence–

pseudo-absence data (e.g., Elith et al. 2006) seems likely

to find incomplete (at best) or spurious (at worst)

covariate relationships. MacKenzie et al. (2006) provide

examples of spurious conclusions about habitat rela-

tionships that arise through failure to account for

FIG. 7. Least Flycatcher trends (number of birds per point, mean 6 SE) in Chequamegon National Forest, Wisconsin, USA.
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detection heterogeneity. Our results suggest that erro-

neous conclusions about habitat relationships could also

arise through failure to properly account for patterns of

overdispersion.

Abundance

Our results showed that relatively little correction in

abundance curves occurred between the raw count

models and the removal mixtures (Figs 5–10, Appendix

C). This may have occurred for several reasons. First,

with 10-minute counts it is plausible that a relatively

large proportion of individuals available for detection

were actually detected. Second, the removal method may

not fully correct for imperfect detection. Alldredge et al.

(2007c) showed that a related method (time-to-detec-

tion) was negatively biased in experimental tests with

auditory detection when used with 100 m radius circular

point counts. Third, the method may not completely

account for availability if there are some individual birds

present that sing only rarely or not at all (Johnson 2008).

For most species, estimates of mean abundance using

the ZIP distribution were substantially higher than with

either the Poisson or NB distributions, and this was true

across both counts and mixtures. This is in part due to

our presentation of results. The ZIP means are means

among the 1� / ‘‘suitable’’ sites, whereas the means of

the Poisson and NB distributions are means across all

sites. Nevertheless, we found the ZIP means, with excess

zeros removed, to be more informative of true habitat

relationships and trends in the presence of overdisper-

sion. We also found that the specific form of the most

preferred abundance model (the preferred covariate

model for abundance) as well as the shape of the

abundance curve was strongly affected by whether or

not the ZIP distribution was used (e.g., Figs. 7–10).

Thus, like Ver Hoef and Boveng (2007), we found that

the choice of method for modeling overdispersion could

have a large influence on inference about covariates to

abundance.

FIG. 8. Least Flycatcher trends (number of birds per point, mean 6 SE) in Chippewa National Forest.
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In our results, trends inferred from counts were

similar to trends inferred from the removal mixtures

for most species. Therefore, either the analysis of raw

counts provided a reliable estimate of trend or the

removal mixtures did not. Several patterns in estimated

detection probabilities argue in favor of the former.

First, estimated detection probabilities generally con-

formed to our expectations across species, with conspic-

uous, easily detected species showing high detection

probabilities, and species generally considered more

cryptic showing low detection probabilities. Second, the

change in our survey methodology in 1995 resulted in a

predictable change in estimated detection probability

that was confirmed in our analyses. Third, in our results

the assumption of constant p is never satisfied; the model

pf�g is never competitive, but neither is pfyqg. Thus,
with the exceptions noted here, heterogeneous detection

probabilities did not impose systematic trends on

counts. Our results broadly support the assertion of

Johnson (2008) that even when the strong assumption of

homogeneity is not met, raw counts may be a reliable

index of abundance.

Why didn’t we observe greater trend differences

in counts vs. mixtures?

A growing body of evidence suggests that many

factors, including weather, habitat structure, phenology,

background noise, anthropogenic noise, time of day,

and observer differences can all affect the detectability

of birds during point counts (Alldredge et al. 2007b,

Simons et al. 2007, Pacifici et al. 2008). How can we

reconcile our results here with those results? First, our

results do not prove that anthropogenic and environ-

mental factors have little influence on detectability in

our system. On the contrary, we believe that they do and

are responsible for a considerable amount of the annual

variation in detectability that is depicted in Fig. 2. Thus,

we attribute much of the lack of differences in trends

between counts and mixtures to the way in which our

survey protocols were standardized during the design

FIG. 9. Least Flycatcher trends (number of birds per point, mean 6 SE) in Superior National Forest.
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phase to anticipate detection heterogeneity. Clearly it

would be useful to understand the conditions under

which our comparative results might generalize, whether

across species, studies, or both. We will now provide

some heuristic guidance, noting in advance that the

conditions we cite generally conform to the two criteria

proposed by Johnson (2008): p independent of N and

Var( p) small in relation to Var(N ).

From a methodological point of view, there was little

or no a priori reason to suspect systematic changes in

detectability in our study. Our observers are trained

consistently across years; they change from year to year;

and within years they are distributed among habitats so

as to avoid confounding observers with habitat types or

particular points. Thus, changes in the ability of

returning observers and differences among observers

within years are far less likely to impose a pattern than,

for example, in the North American Breeding Bird

Survey (Sauer et al. 1994). Similarly, our points are all

off-road, making changes in anthropogenic noise (e.g.,

Buckland 2006) an unlikely confounding factor. Inter-

estingly, the change in methodology between 1994 and

1995 was an a priori design consideration that we had

flagged as having a possible effect on trends. Our

detection probability analyses largely confirmed our

suspicions, but the effect appears to have been of short

enough duration relative to the full time series that it did

not substantially alter the fitted trends.

Several data considerations from our study also help

to explain our result. First, our time series is long

enough that short-term patterns of detectability, clearly

evident over 3–5 year time scales, appear much more like

random fluctuations in detectability over 10–15 year

timescales. Second, the large sample sizes (numbers of

birds detected, Appendix B) result in relatively small

degrees of sampling uncertainty, further reducing the

likelihood of spurious trends in abundance, detectabil-

ity, or both. In general, agreement between trends

inferred from counts vs. mixtures increased with the

number of detections, and the greatest disagreement

among the two methods was observed with Brown

Creeper (Fig. 10), one of two smallest samples included

FIG. 10. Brown Creeper trends (number of birds per point, mean 6 SE) in Chequamegon National Forest.
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in our study. The latter considerations suggest that

Johnson’s (2008) second condition [Var( p) � Var(N) ]

can be meaningfully applied to sampling variance as well

as process variance.

Doubts about the efficacy of controlling detection

heterogeneity through standardization of protocols have

been used as a justification for incorporating detection

probability estimation into the analysis of animal moni-

toring data (MacKenzie et al. 2006, Simons et al. 2007).

Our results suggest that standardization can be effective.

However, we believe that our results also depend on large

sample sizes and that standardization alone would not be

sufficient to overcome detection heterogeneity with limited

data. Nevertheless, it is worth noting that careful a priori

attention to survey protocols to anticipate confounded

results constitutes sound experimental design regardless of

whether or not detection probabilities will be estimated

and/or controlled.
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APPENDIX A

Likelihood functions, negative log-likelihood functions, and gradients of the negative log-likelihood function for all likelihoods
(Ecological Archives A019-085-A1).

APPENDIX B

Species list, models, and AIC tables for all sixteen species reporting the minimal (best) set of models accounting for at least 99%
of model weight (Ecological Archives A019-085-A2).

APPENDIX C

Plots of zero inflation, overdispersion, and abundance trends from the best model for each species and each likelihood
(Ecological Archives A019-085-A3).
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